Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression.

Biochem Biophys Res Commun

Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. Electronic address:

Published: December 2018

Bladder cancer (BCa) belongs to a popular urological malignancy and leads to large numbers of deaths worldwide. Recently, emerging evidences indicate that long noncoding RNAs (lncRNAs) are closely related with BC occurrence and progression. However, the function of lncRNA MAGI2-AS3 remains poorly understood in BC. In this present study, we screened out a novel lncRNA MAGI2-AS3 whose expression was downregulated in BCa tissues. We showed that MAGI2-AS3 downregulation in BCa patients indicated a poor prognosis. Functionally, we showed that MAGI2-AS3 overexpression inhibits proliferation, migration and invasion of BCa cells. Moreover, ectopic expression of MAGI2-AS3 suppresses BCa growth in vivo. Bioinformatics analysis revealed that MAGI2-AS3 could serve as a competing endogenous RNA (ceRNA) for miR-15b-5p. In the meantime, miR-15b-5p directly targeted CCDC19, a tumor suppressor in BCa. Rescue assays demonstrated that knockdown of CCDC19 restored the proliferation, migration and invasion of BCa cells suppressed by MAGI2-AS3 overexpression. In conclusion, this study identified a novel mechanism that MAGI2-AS3/miR-15b-5p/CCDC19 signaling pathway regulates BCa progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.11.013DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
magi2-as3
8
bladder cancer
8
bca
8
lncrna magi2-as3
8
magi2-as3 overexpression
8
proliferation migration
8
migration invasion
8
invasion bca
8
bca cells
8

Similar Publications

Background: In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the prognosis of NSCLC.

View Article and Find Full Text PDF

Background: N6-methyladenosine (mA)-mediated epitranscriptomic pathway has been shown to contribute to chemoresistance and radioresistance. Our previous work confirmed the defense of lycorine against tamoxifen resistance of breast cancer (BC) through targeting HOXD antisense growth-associated long non-coding RNA (HAGLR). Whereas, the precise regulation among them remains to be elucidated.

View Article and Find Full Text PDF

Background: Bladder cancer (BCa) is the most common neoplasm of the urinary system, and its high rates of progression and recurrence contribute to a generally poor prognosis, especially in advanced cases. It is reported that disulfidptosis is closely related with tumor proliferation. We aimed to construct a disulfidptosis-associated long non-coding RNA (lncRNA) signature that can predict prognosis and immune microenvironment in BCa.

View Article and Find Full Text PDF

Long non-coding RNAs as prognostic biomarkers in non-muscle invasive bladder cancer: A systematic review.

Narra J

December 2024

Division of Urology, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Traditional prognostic tools for non-muscle invasive bladder cancer (NMIBC) often overestimate progression and recurrence risks, underscoring the need for more precise biomarkers. While long non-coding ribonucleic acids (lncRNAs) have been reviewed in bladder cancer, no review has focused on NMIBC. The aim of this study was to address this gap by investigating the role of lncRNAs in predicting NMIBC survival and progression.

View Article and Find Full Text PDF

Background: Cellular senescence is considered a new marker of cancer. It has been suggested that long non-coding RNA (lncRNA) can be used to predict the prognosis of cancers. However, it remains to be seen whether the lncRNAs associated with cellular senescence can be used to predict the prognosis of gastric cancer (GC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!