Conformal Hydrogel Coatings on Catheters To Reduce Biofouling.

Langmuir

Department of Biological and Environmental Engineering , Cornell University, Ithaca , New York 14850 , United States.

Published: February 2019

Reducing biofouling while increasing lubricity of inserted medical catheters is highly desirable to improve their comfort, safety, and long-term use. We report here a simple method to create thin (∼30 μm) conformal lubricating hydrogel coatings on catheters. The key to this method is a three-step process including shape-forming, gradient cross-linking, and swell-peeling (we label this method as SGS). First, we took advantage of the fast gelation of agar to form a hydrogel layer conformal to catheters; then, we performed a surface-bound UV cross-linking of acrylamide mixed in agar in open air, purposely allowing gradual oxygen inhibition of free radicals to generate a gradient of cross-linking density across the hydrogel layer; and finally, we caused the hydrogel to swell to let the non-cross-linked/loosely attached hydrogel fall off, leaving behind a surface-bound, thin, and mostly uniform hydrogel coating. This method also allowed easy incorporation of different polymerizable monomers to obtain multifunctionality. For example, incorporating an antifouling, zwitterionic moiety sulfobetaine in the hydrogel reduced both in vitro protein adsorption and in vivo foreign-body response in mice. The addition of a biocidal N-halamine monomer to the hydrogel coating deactivated both Staphylococcus aureus ( S. aureus) and Escherichia coli ( E. coli) O157:H7 within 30 min of contact and reduced biofilm formation by 90% compared to those of uncoated commercial catheters when challenged with S. aureus for 3 days. The lubricating, antibiofouling hydrogel coating may bring clinical benefits in the use of urinary and venous catheters as well as other types of medical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b03074DOI Listing

Publication Analysis

Top Keywords

hydrogel coating
12
hydrogel
9
hydrogel coatings
8
coatings catheters
8
gradient cross-linking
8
hydrogel layer
8
catheters
6
conformal hydrogel
4
catheters reduce
4
reduce biofouling
4

Similar Publications

Arterial stiffness is a key contributor to cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease, it has been characterized to be associated with the aberrant migration of vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms driving VSMC migration in stiff environments remain incompletely understood. We recently demonstrated that survivin, a member of the inhibitor of apoptosis protein family, is highly expressed in both mouse and human VSMCs cultured on stiff polyacrylamide hydrogels, where it modulates stiffness-mediated cell cycle progression and proliferation.

View Article and Find Full Text PDF

Compared to antimicrobial agents, anti-adhesive surfaces can reduce bacteria adhesion and biofilm formation in catheters, providing better selectivity, efficiency, and device life span. In this research, novel anionic surface biomaterials were created and tested to reduce microbial adhesion and colonization in medical device coating. Maleic anhydride (MA) was polymerized with 2-HEMA in varying amounts to produce a p(HEMA--MA) hydrogel copolymer.

View Article and Find Full Text PDF

Tough and Functional Hydrogel Coating by Electrostatic Spraying.

Small

December 2024

Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.

Hydrogel coatings impart superior surface properties to materials, but their application on large and complicated substrates is hindered by two challenges: limited wetting conditions and intricate curing processes. To overcome the challenges, lyophilized adhesive hydrogel powders (LAHPs) are developed, which consist of poly(acrylic acid-co-3-(trimethoxysilyl)propyl methacrylate) crosslinked with chitosan. These powders are electrostatic sprayed onto substrates to address wetting issues and rehydrated to form bulk hydrogel coatings to circumvent curing challenges.

View Article and Find Full Text PDF

Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.

View Article and Find Full Text PDF

Herein, novel, superabsorbent, and pH-responsive hydrogels obtained by the photochemical cross-linking of hydrophilic poly(vinylphosphonates) are introduced. First, statistical copolymers of diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP) are synthesized via rare earth metal-mediated group-transfer polymerization (REM-GTP) yielding similar molecular weights ( = 127-142 kg/mol) and narrow polydispersities ( < 1.12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!