The article presents the potential application of the time domain reflectometry (TDR) technique to measure moisture transport in unsaturated porous materials. The research of the capillary uptake phenomenon in a sample of autoclaved aerated concrete (AAC) was conducted using a TDR sensor with the modified construction for non-invasive testing. In the paper the basic principles of the TDR method as a technique applied in metrology, and its potential for measurement of moisture in porous materials, including soils and porous building materials are presented. The second part of the article presents the experiment of capillary rise process in the AAC sample. Application of the custom sensor required its individual calibration, thus a unique model of regression between the readouts of apparent permittivity of the tested material and its moisture was developed. During the experiment moisture content was monitored in the sample exposed to water influence. Monitoring was conducted using the modified TDR sensor. The process was additionally measured using the standard frequency domain (FD) capacitive sensor in order to compare the readouts with traditional techniques of moisture detection. The uncertainty for testing AAC moisture, was expressed as RMSE (0.013 cm³/cm³) and expanded uncertainty (0.01⁻0.02 cm³/cm³ depending on moisture) was established along with calibration of the applied sensor. The obtained values are comparable to, or even better than, the features of the traditional invasive sensors utilizing universal calibration models. Both, the TDR and capacitive (FD) sensor enabled monitoring of capillary uptake phenomenon progress. It was noticed that at the end of the experiment the TDR readouts were 4.4% underestimated and the FD readouts were overestimated for 12.6% comparing to the reference gravimetric evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263757PMC
http://dx.doi.org/10.3390/s18113935DOI Listing

Publication Analysis

Top Keywords

tdr sensor
12
porous materials
12
moisture
8
measure moisture
8
moisture content
8
article presents
8
capillary uptake
8
uptake phenomenon
8
capacitive sensor
8
sensor
7

Similar Publications

Plant Biosensors Analysis for Monitoring Nectarine Water Status.

Biosensors (Basel)

November 2024

Irrigation Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Murcia, Spain.

The real-time monitoring of plant water status is an important issue for digital irrigation to increase water productivity. This work focused on a comparison of three biosensors that continuously evaluate plant water status: trunk microtensiometers (MTs), trunk time-domain reflectometry (TDR), and LVDT sensors. During the summer and autumn seasons (DOY 150-300), nectarine trees were subjected to four different consecutive irrigation periods based on the soil Management Allowed Deficit (MAD) concept, namely: MAD (light deficit); MAD (moderate deficit); MAD (severe deficit), and MAD (full irrigation).

View Article and Find Full Text PDF

Soil moisture (SM) is a critical variable influencing various environmental processes, but traditional microwave sensors often lack the spatial resolution needed for local-scale studies. This study develops a novel stacking ensemble learning framework to enhance the spatial resolution of satellite-derived SM data to 1 km in the Urmia basin, a region facing significant water scarcity. We integrated in-situ SM measurements (obtained using time-domain reflectometry [TDR]), Soil Moisture Active Passive (SMAP) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SM products, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and vegetation indices, precipitation records, and topography data.

View Article and Find Full Text PDF
Article Synopsis
  • Soil dielectric sensors are essential for measuring real-time soil moisture, but their accuracy is affected by soluble salts in the soil.
  • A study tested eight popular sensors across various salinity levels, finding that most overestimated soil moisture, particularly at higher salinities, while the EC-5 sensor remained accurate.
  • The results suggest that for soil salinity levels greater than 1.0 dS·m, calibrated sensors like TDR series and EC-5 are the best options to ensure accurate soil moisture readings.
View Article and Find Full Text PDF

Precise soil water content (SWC) measurement is crucial for effective water resource management. This study utilizes the Cosmic-Ray Neutron Sensor (CRNS) for area-averaged SWC measurements, emphasizing the need to consider all hydrogen sources, including time-variable plant biomass and water content. Near Mead, Nebraska, three field sites (CSP1, CSP2, and CSP3) growing a maize-soybean rotation were monitored for 5 (CSP1 and CSP2) and 13 (CSP3) years.

View Article and Find Full Text PDF

Using 5TE Sensors for Monitoring Moisture Conditions in Green Parks.

Sensors (Basel)

May 2024

Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

The ground surface and subsurface of green parks in arid and desert areas may be subjected to desiccation as a result of weather and hot temperatures. It is not wise to wait until plants are turning pale and yellow before watering is resumed. Given the scarcity of water in typical desert zones, we recommend full control of irrigation water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!