In recent years, many studies examined if EEG signals from traumatic brain injury (TBI) patients can be used for new rehabilitation technologies, such as BCI systems. However, extraction of the high-gamma band related to movement remains challenging due to the presence of surface electromyogram (sEMG) caused by unconscious facial and head movement of patients. In this paper, we proposed a modified independent component analysis (ICA) model for EMG artifact removal in the EEG data from TBI patients with a hemicraniectomy. Here, simulated EMG was generated and added to the raw EEG data as the extra channels for independent components calculation. After running ICA, the independent components (ICs) related to artifacts were identified and rejected automatically through several criteria. EEG data underlying hand movement from one healthy subject and one TBI patient with a hemicraniectomy were conducted to verify the efficacy of this algorithm. Results showed that the proposed algorithm removed sEMG artifacts from the EEG data by up to 86.72% while preserving the associated brain features. In particular, the high-gamma band (80 to 160 Hz) was found to arise principally from the hemicraniectomy area after this technique was applied. Meanwhile, we found that the magnitude of gamma power during movement improved after removal of sEMG artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8513658DOI Listing

Publication Analysis

Top Keywords

eeg data
20
artifacts eeg
8
tbi patients
8
high-gamma band
8
independent components
8
semg artifacts
8
eeg
6
data
5
novel algorithm
4
algorithm removing
4

Similar Publications

Prior research has indicated musicians show an auditory processing advantage in phonemic processing of language. The aim of the current study was to elucidate when in the auditory cortical processing stream this advantage emerges in a cocktail-party-like environment. Participants (n = 34) were aged 18-35 years and deemed to be either a musician (10+-year experience) or nonmusician (no formal training).

View Article and Find Full Text PDF

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

The complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.

View Article and Find Full Text PDF

Partial directed coherence analysis of resting-state EEG signals for alcohol use disorder detection using machine learning.

Front Neurosci

January 2025

Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

Introduction: Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!