Major Depressive Disorder (MDD) is a common psychiatric illness. Automatically classifying depression severity using audio analysis can help clinical management decisions during Deep Brain Stimulation (DBS) treatment of MDD patients. Leveraging the link between short-term emotions and long-term depressed mood states, we build our predictive model on the top of emotion-based features. Because acquiring emotion labels of MDD patients is a challenging task, we propose to use an auxiliary emotion dataset to train a Deep Neural Network (DNN) model. The DNN is then applied to audio recordings of MDD patients to find their low dimensional representation to be used in the classification algorithm. Our preliminary results indicate that the proposed approach, in comparison to the alternatives, effectively classifies depressed and improved phases of DBS treatment with an AUC of 0.80.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8513610DOI Listing

Publication Analysis

Top Keywords

mdd patients
12
depression severity
8
dbs treatment
8
severity classification
4
classification speech
4
speech emotion
4
emotion major
4
major depressive
4
depressive disorder
4
mdd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!