Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation method that is convenient and popular in clinical use. However, there is a practical issue in applying tDCS; it is difficult to optimize the montage for each individual because of inherent inter-subject variability. Thus, the stimulation effect of such individual anatomical head variation has been investigated using anatomically realistic models. In this work, we developed a multi-scale computational model, which combined head models based on magnetic resonance imaging (MRI) and multi-compartmental neuronal models of pyramidal neurons (PNs), to investigate both the macroscopic and microscopic effects oftDCS. We constructed three different head models and compared the stimulation effects of tDCS in the primary cortex area (Brodmann area 4) with respect to the electric fields induced and steady-state membrane polarizations. We observed that the electric field behavior and induced somatic polarizations varied across subjects in accordance with the thicknesses of cerebrospinal fluid (CSF) and skull measured in each model. Thus, we concluded that variations in the CSF and skull might be correlated with the effects of tDCS.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8513056DOI Listing

Publication Analysis

Top Keywords

inter-subject variability
8
head models
8
effects tdcs
8
csf skull
8
stimulation
4
stimulation inter-subject
4
variability tdcs-multi-scale
4
tdcs-multi-scale modeling
4
modeling study
4
study transcranial
4

Similar Publications

Background And Objective: Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets.

View Article and Find Full Text PDF

Introduction: Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.

Methods: We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability.

View Article and Find Full Text PDF

Significant dehydration can increase thermoregulatory and cardiovascular strain and impair physical and cognitive performance. Despite these negative effects, there are currently no objective, non-invasive tools to monitor systemic hydration. Raman spectroscopy is an optical modality with the potential to fill this gap because it is sensitive to water, provides results quickly, and can be applied non-invasively.

View Article and Find Full Text PDF

Unlabelled: EEG signals play a crucial role in assessing cognitive load, which is a key element in ensuring the secure operation of human-computer interaction systems. However, the variability of EEG signals across different subjects poses a challenge in applying the pre-trained cognitive load assessment model to new subjects. Moreover, previous domain adaptation research has primarily focused on developing complex network architectures to learn more domain-invariant features, overlooking the noise introduced by pseudo-labels and the challenges posed by domain migration problems.

View Article and Find Full Text PDF

Purpose: Evaluate the feasibility of quantification of Relaxation Along a Fictitious Field in the 2nd rotating frame (RAFF2) relaxation times in the human myocardium at 3 T.

Methods: mapping was performed using a breath-held ECG-gated acquisition of five images: one without preparation, three preceded by RAFF2 trains of varying duration, and one preceded by a saturation prepulse. Pixel-wise maps were obtained after three-parameter exponential fitting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!