Habitual snoring has been known to increase the risk for serious health problems in addition to affecting the quality of others' sleep. Several recent consumer products aim to automatically detect snoring events and wake the snorer to elicit a posture change. In this paper, we present a study comparing two of the methods, electromyography vs. accelerometry, proposed for automated snoring detection and incorporation of these into a wearable system. The study includes (a) the testing of various sensor configurations and placements to obtain optimal electromyography and accelerometry signals, (b) a review of the accuracy of a variety of snore detection algorithms from previously attained biological signals, and (3) design of an embedded device with integrated sensors and haptic feedback capability. Our preliminary results indicate superiority of accelerometry over electromyography. Further research opportunities to prove the concept and improve the design are then detailed for future work.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8512941DOI Listing

Publication Analysis

Top Keywords

snore detection
8
electromyography accelerometry
8
accelerometer based
4
based active
4
active snore
4
detection behavioral
4
behavioral modification
4
modification habitual
4
habitual snoring
4
snoring increase
4

Similar Publications

Interest in obstructive sleep apnea is rising due to its neurocognitive and cardiovascular impacts, including systemic hypertension, myocardial infarction, and cerebrovascular events. Obstructive sleep apnea diagnosis can be suggested through symptoms like snoring, daytime sleepiness, and physical signs like increased neck circumference; however, overnight polysomnography is recommended to confirm. Exhaled breath condensate has emerged as a novel, noninvasive technique for biomarker sample collection.

View Article and Find Full Text PDF

Purpose: Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia.

View Article and Find Full Text PDF

Sleep apnea/hypopnea is a sleep disorder characterized by repeated pauses in breathing which could induce a series of health problems such as cardiovascular disease (CVD) and even sudden death. Polysomnography (PSG) is the most common way to diagnose sleep apnea/hypopnea. Considering that PSG data acquisition is complex and the diagnosis of sleep apnea/hypopnea requires manual scoring, it is very time-consuming and highly professional.

View Article and Find Full Text PDF

Objective: A preliminary clinical evaluation of the efficacy, comfort, and adverse reactions of two mandibular advancement devices (MADs) in the treatment of Obstructive Sleep Apnea (OSA).

Methods: Forty patients with mild-to-severe OSA were recruited and randomly divided into two groups. They were treated with Shark-fin or Silensor MAD, respectively.

View Article and Find Full Text PDF

Background:  While cardiovascular and neurological diseases induced by obstructive sleep apnea syndrome (OSAS) hypoxia are well established, the association between neuro-otological diseases and OSAS is not entirely understood. Vestibular and audiological tests have been used to evaluate the degeneration of neurons in the brainstem caused by recurrent hypoxia.

Purpose:  Evaluation of the vestibular-evoked myogenic potential (VEMP) test findings applied to detect the possible influence on the vestibular reflex arc due to hypoxia in patients diagnosed with OSAS using Activity-Specific Balance Confidence (ABC) and Berg Balance Scale (BBS) scales determination of scores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!