Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As the duration of manned missions outside of the Earth's protective shielding increase, astronauts are at risk for exposure to space radiation. Various organ systems may be damaged due to exposure. This study investigates the bone strength changes using finite element modeling of Long Evans rats (n=85) subjected to graded, head-only proton (0, 10, 25, and 100 cGy, 150 MeV/n) and silicon (0, 10, 25, and 50 cGy, 300 MeV/n) radiation. The strength of the femoral neck will be examined due its clinical relevance to hip fractures. It has been shown in previous studies that bone mineral density was not reduced at the site of fracture. These findings question whether measurements of bone mineral density may be used to assess risk of hip fracture. The mechanisms leading to the irregular relationship between bone density and strength are still uncertain within literature and investigated to greater extent in clinical applications. Finite element analysis within this study simulated physiological loading of the femoral neck. No significant changes in femoral neck strength were found across doses of proton or silicon head-only radiation. Future work includes performing mechanical testing of the bone samples. Moving from mouse to larger animal models may also provide the increased lifespan for assessing the long-term outcomes of radiation exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2018.8512620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!