Simultaneously interrogation of multiple nuclei has been of interest since the very earliest days of MRI [1]-[3]. Our group and several others are revisiting this topic [4]-[6]. Very fast broadband electronics make it possible to digitize a wide spectrum, including multiple nuclei, but this places great demands on data throughput. Another issue is that there can be great variance between RF preamplifier gain required for the different nuclei. To overcome the data problem, it is desirable to use undersampling, but this requires passband filtering around the resonant frequency of each nuclei. Here we present a frequency agile front end that provides separate data paths for each nucleus, either from a single coil or from multiple ports, allows independent gain, filters each using very flexible transmission line filtering, and then combines them back for undersampling.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8512558DOI Listing

Publication Analysis

Top Keywords

multiple nuclei
8
flexible filtering
4
filtering front-end
4
front-end simultaneous
4
simultaneous multinuclear
4
multinuclear spectroscopy
4
spectroscopy simultaneously
4
simultaneously interrogation
4
interrogation multiple
4
nuclei
4

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Beneficial Effects of a Moderately High-Protein Diet on Telomere Length in Subjects with Overweight or Obesity.

Nutrients

January 2025

Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31008 Pamplona, Spain.

Background And Aim: Telomere length (TL) is a key biomarker of cellular aging, with shorter telomeres associated with age-related diseases. Lifestyle interventions mitigating telomere shortening are essential for preventing such conditions. This study aimed to examine the effects of two weight loss dietary strategies, based on a moderately high-protein (MHP) diet and a low-fat (LF) diet on TL in individuals with overweight or obesity.

View Article and Find Full Text PDF

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

Cognitive impairment affects memory, reasoning, and problem-solving, with early detection being critical for effective management. The amygdala, a key structure in emotional processing and memory, may play a pivotal role in detecting cognitive decline. This study examines differences in amygdala nuclei volumes in patients with varying levels of cognitive performance to evaluate its potential as a biomarker.

View Article and Find Full Text PDF

Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!