A professional quartet of saxophonists playing in ensemble provides a perfect scenario to study the eventual occurrence of synchronous oscillatory brain activity across subjects. Here, we applied hyperscanning methodologies for simultaneously recordings of electroencephalographic (EEG) signals from four professional saxophonists while they observ an audiovideo recording of their own previous musical performance. An ad-hoc musical composition was written for the study. At debriefing, the subjects were asked to answer two questionnaires to assess their empathy trait and the musical leadership. In order to estimate the hyperconnectivity of each musician we proposed a measure which combines phase synchronization index of brain oscillations and graph theory framework. The inter-connectivity level of each musician was statistically compared. Statistical results revealed a significant lower hyperconnectivity in the left Brodmann area 44 for the Soprano with respect to the other three members. Recent theories attributed this brain region (Broca's area) to music generation, empathy processes and communication. We hypothesize a relationship between brain-to-brain connectivity level and the musical role within the quartet.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8512409DOI Listing

Publication Analysis

Top Keywords

playing ensemble
8
eeg hyperconnectivity
4
hyperconnectivity study
4
study saxophone
4
saxophone quartet
4
quartet playing
4
ensemble professional
4
professional quartet
4
quartet saxophonists
4
saxophonists playing
4

Similar Publications

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway.

View Article and Find Full Text PDF

COX-2 Inhibitor Prediction With KNIME: A Codeless Automated Machine Learning-Based Virtual Screening Workflow.

J Comput Chem

January 2025

Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.

Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.

View Article and Find Full Text PDF

Uncertainty-Aware Multimodal Trajectory Prediction via a Single Inference from a Single Model.

Sensors (Basel)

January 2025

Seamless Trans-X Lab (STL), School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea.

In the domain of autonomous driving, trajectory prediction plays a pivotal role in ensuring the safety and reliability of autonomous systems, especially when navigating complex environments. Unfortunately, trajectory prediction suffers from uncertainty problems due to the randomness inherent in the driving environment, but uncertainty quantification in trajectory prediction is not widely addressed, and most studies rely on deep ensembles methods. This study presents a novel uncertainty-aware multimodal trajectory prediction (UAMTP) model that quantifies aleatoric and epistemic uncertainties through a single forward inference.

View Article and Find Full Text PDF

Psoriasis is a chronic, immune-mediated skin disease characterized by lifelong persistence and fluctuating symptoms. The clinical similarities among its subtypes and the diversity of symptoms present challenges in diagnosis. Early diagnosis plays a vital role in preventing the spread of lesions and improving patients' quality of life.

View Article and Find Full Text PDF

Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis.

Cells

December 2024

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!