A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exudates Segmentation using Fully Convolutional Neural Network and Auxiliary Codebook. | LitMetric

Diabetic retinopathy (DR) is an asymptotic complication of diabetes and the leading cause of preventable blindness in the working-age population. Early detection and treatment of DR is critical to avoid vision loss. Exudates are one of the earliest and most prevalent signs of DR. In this work, we propose a novel two-stage method for the detection and segmentation of exudates in fundus photographs. In the first stage, a fully convolutional neural network architecture is trained to segment exudates using small image patches. Next, an auxilary codebook is built from network's intermediate layer output using incremental principal component analysis. Finally, outputs of both systems are combined to produce final result. Compared to other methods, the proposed algorithm does not require computation of candidate regions or removal of other anatomical structures. Furthermore, a transfer learning approach was applied to improve the performance of the system. The proposed method was evaluated using publicly available E-Ophtha datasets. It achieved better results than the state-of-the-art methods in terms of sensitivity and specificity metrics. The proposed method accomplished better results using a diseased//not diseased evaluation scenario which indicates its applicability for screening purposes. Simplicity, performance, efficiency and robustness of the proposed method demonstrate its suitability for diabetic retinopathy screening applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8512354DOI Listing

Publication Analysis

Top Keywords

proposed method
12
fully convolutional
8
convolutional neural
8
neural network
8
diabetic retinopathy
8
exudates
4
exudates segmentation
4
segmentation fully
4
network auxiliary
4
auxiliary codebook
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!