The arrangement of cardiac cells into strand and sheet-like structures within the heart wall, confers important electrical properties onto heart tissue. Unraveling cardiomyocyte architecture in both healthy and diseased hearts is fundamental to understanding the mechanisms generating normal rhythm and arrhythmia. We analyzed five extended volume serial image stacks of normal pig left ventricular tissue. Analysis included: (1) reconstruction of original tissue volume and shape with non-linear correction maps; (2) segmentation and higher-order descriptions, areas and orientations of laminar structures through the heart wall; (3)computation of fiber directions; (4) computation of tissue connectivity using a shell filter. These measures contributed to a deeper and more objective understanding of cardiac tissue structures and their spatial variation than previously possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2018.8512309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!