Cardiotocography (CTG) consists in the simultaneous recording of two distinct traces, the fetal heart rate (FHR; bpm) and the maternal uterine contractions (UCs; mmHg). CTG analysis consists in the evaluation of specific features of traces, among which fetal decelerations (DECs) are considered the "center-stage" since possibly related to fetal distress. DECs are classified based on their duration and occurrence in relation to UCs as prolonged, early, late and variable; each class associates to a specific status of the fetus health. Typically, CTG traces are visually interpreted; however, computerized CTG analysis may overcome subjectivity in CTG interpretation. Thus, this study proposes a new automatic algorithm for computerized identification and classification of DECs. The algorithm was tested on the 552 CTG recordings constituting the "CTU-CHB intra-partum CTG database" of Physionet. Of these, 470 (85.15%) were found suitable for automatic DECs identification and classification. Overall, 5888 DECs were identified, of which 3255 (55.28%) were classified while the other 2633 (44.72%) remained unclassified due to very strict preliminary classification criteria (now required for avoiding misclassifications). Among the classified DECs, 468 (14.38%) were classified as prolonged, 1498 (46.02%) as early, 32 (0.98%) as late, 1257 (38.62%) as variable. Thus, among the classified DECs, the most common are the early and the variable ones (overall 84.64%), the occurrence of which ranged from 0 to 14 DECs per recording. These findings are in agreement with what reported in literature. In conclusion, the proposed algorithm for automatic DECs identification and classification represents a useful tool for computerized CTG analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2018.8512432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!