A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sleep Posture Classification using a Convolutional Neural Network. | LitMetric

Sleep is a process of rest and renewal that is vital for humans. However, there are several sleep disorders such as rapid eye movement (REM) sleep behaviour disorder (RBD), sleep apnea, and restless leg syndrome (RLS) that can have an impact on a significant portion of the population. These disorders are known to be associated with particular behaviours such as specific body positions and movements. Clinical diagnosis requires patients to undergo polysomnography (PSG) in a sleep unit as a gold standard assessment. This involves attaching multiple electrodes to the head and body. In this experiment, we seek to develop non-contact approach to measure sleep disorders related to body postures and movement. An Infrared (IR) camera is used to monitor body position unaided by other sensors. Twelve participants were asked to adopt and then move through a set of 12 pre-defined sleep positions. We then adopted convolutional neural networks (CNNs) for automatic feature generation from IR data for classifying different sleep postures. The results show that the proposed method has an accuracy of between 0.76 & 0.91 across the participants and 12 sleepposes with, and without a blanket cover, respectively. The results suggest that this approach is a promising method to detect common sleep postures and potentially characterise sleep disorder behaviours.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8513009DOI Listing

Publication Analysis

Top Keywords

sleep
11
convolutional neural
8
sleep disorders
8
sleep postures
8
sleep posture
4
posture classification
4
classification convolutional
4
neural network
4
network sleep
4
sleep process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!