Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In Brain Computer Interfacing (BCI), speech imagery is still at nascent stage of development. There are few studies reported considering mostly vowels or monosyllabic words. However, language specific vowels or words made it harder to standardise the whole analysis of electroencephalography (EEG) while distinguishing between them. Through this study, we have explored significance of multifractal parameters for different imagined vowels chosen from International Phonetic Alphabets (IPA). The vowels were categorised into two categories, namely, soft vowels and diphthongs. Multifractal analysis at EEG subband levels were evaluated. We have also reported significant contrasts between spatiotemporal distributions with fractal analysis for activation of different brain regions in imagining vowels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2018.8512579 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!