To increase the platinum adsorption capacity of Escherichia coli (E. coli) biomass, we fused EC20 protein to the E. coli cell surface using an InaKN-based display system, which is the N-terminal region of ice nucleation protein that can be employed as a cell surface display motif. The media and culture conditions were optimized for EC20 (a phytochelatin analogue with 20 repeating units of glutamate and cysteine) expression and Pt (IV) biosorption. Furthermore, the adsorption process was elucidated from aspect of adsorption kinetics and equilibrium, and the characterization of blank and Pt-loaded cells were analyzed using SEM, AFM, TEM, FT-IR and XPS. Our study demonstrated that E. coli strain, which had InaKN-EC20 protein expressed on the cell surface, showed a great enhancement in Pt (IV) adsorption under optimized condition when comparing with that of original E. coli strain. The SEM-EDX analysis revealed that the cellular morphology has been changed in Pt-loaded cells, and the weight percent of platinum in the surface of E.coli increased substantially after displaying EC20 protein. Furthermore, intracellular platinum accumulation was detected in Pt-loaded EC20 cells since a clear peak of platinum exhibited, implying that cytoplasmic EC20 protein might also contribute to platinum accumulation. FTIR analysis revealed that the predominant functional groups in platinum adsorption were amine, carboxyl and phosphate groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.10.116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!