Background And Objective: Tissue non-specific alkaline phosphatase (TNSALP) contains two types-bone- and liver-type-which are produced from the same gene due to differences in splicing. These two differ in their promoter, but the amino acid sequences of the mature proteins are identical. In this study, we examined the relationship between the two types of TNSALP expression and osteoblast differentiation.
Design: Gene expression of the two types of TNSALP was observed by reverse transcription-polymerase chain reaction. MC3T3-NM4 was sub-cloned from an established mouse osteoblastic cell line in which osteoblast characters do not appear without dexamethasone. The C2C12 mouse myoblastic cell line, which can be induced to osteoblasts with bone morphogenic protein 2, and organ-cultured tooth germs were also used in this work.
Results: The gene expression of liver-type TNSALP was observed in only MC3T3-NM4 activated by dexamethasone. For C2C12, the gene expression of bone-type TNSALP was observed even in non-induced conditions where myotubes were formed, whereas the liver-type TNSALP mRNA was only expressed when C2C12 differentiated into osteoblasts by bone morphogenic protein 2. Furthermore, in the organ-cultured tooth germs, the liver-type TNSALP mRNA was expressed according to differentiation of tooth germs.
Conclusion: These results suggest that the liver-type TNSALP mRNA is induced according to differentiation of bone and tooth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2018.10.036 | DOI Listing |
Arch Oral Biol
February 2019
Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Japan.
Background And Objective: Tissue non-specific alkaline phosphatase (TNSALP) contains two types-bone- and liver-type-which are produced from the same gene due to differences in splicing. These two differ in their promoter, but the amino acid sequences of the mature proteins are identical. In this study, we examined the relationship between the two types of TNSALP expression and osteoblast differentiation.
View Article and Find Full Text PDFOncotarget
August 2017
Department of Hemotology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R.China.
Background: Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alkaline phosphatase liver type gene. We seek to explore the clinical manifestations and identify the mutations associated with the disease in a Chinese odonto- hypophosphatasia family.
Results: The proband and his younger brother affected with premature loss of primary teeth at their 2-year-old.
Arch Oral Biol
October 1999
Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
Retinoic acid is a potent inducer of tissue-non-specific alkaline phosphatase (TNSALP) expression in various osteoblastic and fibroblastic cells, and may be involved in morphogenesis, cellular growth and differentiation. This study investigates the effects of retinoic acid on alkaline phosphatase activity and TNSALP gene expression in human dental pulp cells. Cultured cells were treated with various concentrations of retinoic acid (0, 10(-7), 10(- 6), 10 (-5) M) in 0.
View Article and Find Full Text PDFCalcif Tissue Int
February 1999
Department of Food and Nutrition, Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku Tokyo 112-8681, Japan.
Tissue-nonspecific-type alkaline phosphatase (TNSALP) is found in the bone, liver, kidney, and other tissues, and its gene consists of 12 exons with the coding sequence beginning in the second exon. Recently, a noncoding first exon was identified in the liver message (liver type) which differed from that of the previously known osteoblast-derived cDNA sequence (bone type). Although these two mRNAs produce an identical protein, they have different promoter regions.
View Article and Find Full Text PDFJ Periodontal Res
October 1998
Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
Alkaline phosphatase (ALP) in human periodontal ligament (HPDL) cells is classified as a tissue-non-specific alkaline phosphatase (TNSALP) by its enzymatic and immunological properties. Since retinoic acid (RA) has been shown as a potent inducer of TNSALP expression in various osteoblastic and fibroblastic cells, we investigated the effects of RA on the level of ALP activity and expression of TNSALP mRNAs in HPDL cells. Cultured cells were treated with desired RA concentrations (0, 10(-7), 10(-6), 10(-5) M) in medium containing 1% bovine serum albumin without serum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!