Type I natural killer T (NKT) cells are attractive candidates for cancer immunotherapy. In this study, we examined the characteristics of type I NKT cells in patients with adult B-cell acute lymphoblastic leukemia (ALL). We first identified type I NKT cells as Vα24-Jα18 and Vβ11 double-positive CD3 lymphocytes. Using this method, we found that the adult B-cell ALL patients presented significantly lower level of type I NKT cells than the age- and sex-matching control subjects. The expression of IL-21 by type I NKT cells was then examined using intracellular flow cytometry, which showed that with α-GalCer stimulation, the adult B-cell ALL patients presented significantly lower level of IL-21 type I NKT cells than control subjects. By both flow cytometry and ELISA, we found that the vast majority of IL-21-expressing type I NKT cells expressed IL-21R, which was also reduced in adult B-cell ALL patients. Using an in vitro co-culture system, we demonstrated that IL-21R, but not IL-21R, type I NKT cells could promote the IFN-γ, granzyme B, and perforin expression by CD8 T cells in an IL-21-dependent fashion. This type I NKT cell-mediated stimulatory effect was reduced in adult B-cell ALL patients than in control subjects. In addition, we observed a positive correlation between the frequency of IL-21R type I NKT cells and the frequencies of IFN-γ-, granzyme B-, and perforin-expressing circulating CD8 T cells in adult B-cell ALL patients directly ex vivo. Overall, this study identified an IL-21-related impairment in type I NKT cells from adult B-cell ALL patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2018.11.008 | DOI Listing |
World J Surg Oncol
January 2025
Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.
View Article and Find Full Text PDFNeuron
January 2025
Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK. Electronic address:
Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. Electronic address:
Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers.
View Article and Find Full Text PDFChin J Cancer Res
December 2024
Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China.
Gastric cancer (GC) ranks 3rd in incidence rate and mortality rate among malignant tumors in China, and the age-standardized five-year net survival rate of patients with GC was 35.9% from 2010 to 2014. The tumor immune microenvironment (TIME), which includes T cells, macrophages, natural killer (NK) cells and B cells, significantly affects tumor progression, immunosuppression and drug resistance in patients with GC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!