Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
At present, the mechanisms underlying intracranial aneurysm (IA) development remain unclear; however, hemodynamics is considered a crucial factor in the induction of IA. To elucidate the association between hemodynamics and endothelial cell (EC) functions, a modified T chamber system was designed to simulate the adjustable hemodynamic conditions of an artery bifurcation. Normal human umbilical vein ECs (HUVECs) and HUVECs with P120 catenin (P120ctn) knockdown were cultured on coverslips and placed in the chamber. A flow rate of 250 or 500 ml/min impinged on the cell layer. Subsequently, the expression levels of P120ctn and other proteins, and EC morphological alterations, were examined. In normal HUVECs, after 3 h under a flow rate of 500 ml/min, the expression levels of P120ctn, vascular endothelial (VE)‑Cadherin, Kaiso and α‑catenin were decreased, whereas matrix metalloproteinase‑2 (MMP‑2) was increased. In HUVECs with P120ctn knockdown, the period during which ECs adhered to the coverslip was reduced to 1 h under a flow rate of 500 ml/min. In addition, the expression levels of VE‑Cadherin, Kaiso and α‑catenin in ECs were decreased, whereas those of MMP‑2 were increased after 1 h; more prominent alterations were detected under a 500 ml/min flow rate compared with a 250 ml/min flow rate. Adherens junctions (AJs) are critical to the maintenance of normal morphology and EC functioning in the vascular wall, and P120ctn is an important regulator of AJs. Loss of P120ctn may be induced by hemodynamic alterations. In response to changes in hemodynamic conditions, a loss of P120ctn may aggravate AJs between ECs, thus inducing inflammation in the vascular wall. Clinically, hemodynamic alterations may result in a loss of P120ctn and endothelial injury; therefore, P120ctn may have a critical role in inducing intracranial aneurysms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2018.9657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!