Rationale: As a powerful ambient ion source, atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) enables direct analysis at atmospheric pressure/temperature and minimal sample preparation. With the increasing usage of AP-MALDI sources with Orbitrap instruments, systematic characterization of the extent of ion suppression effect (ISE) in AP-MALDI-Orbitrap mass spectrometry imaging (MSI) is desirable. Recently, a new low-pressure MALDI platform has been introduced that reportedly provided better sensitivity. While extensive research efforts have been devoted to improving spatial resolution, fewer studies focused on the characterization and sensitivity improvement of these MALDI platforms that, coupled with high-resolution Orbitraps, provide powerful strategy for MSI.

Methods: We compared the analytical performance of AP and low-pressure (subatmospheric) MALDI sources to study the effect of pressure control in the ion source. Using a model peptide/protein mixture, we systematically evaluated the factors influencing ISE. Furthermore, the effect of laser spot size was evaluated through tissue imaging analysis of lipids and neuropeptides. The effects of ion suppression and laser spot size have also been examined by comparing the number of identified molecular species during MSI analysis.

Results: Several key operating parameters including source pressure, laser energy, laser repetition rate, and microscopic slide coating materials were optimized to minimize the ISE. Under the optimal conditions, the subatmospheric AP-MALDI-Orbitrap platform with high spatial and mass spectral resolution enabled significantly improved coverage of several lipid and neuropeptide families in the MS analysis of mouse brain tissue sections.

Conclusions: The new SubAP-MALDI source coupled with an Orbitrap mass spectrometer was established as a viable platform for in situ endogenous biomolecular analysis with increased sensitivity compared with conventional AP-MALDI sources as evidenced by the confident identification of neuropeptides from mouse brain imaging analyses. The alleviated ISE was key to substantial performance improvement due to optimized intermediate pressure conditions and better ion collection by the ion funnel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353668PMC
http://dx.doi.org/10.1002/rcm.8358DOI Listing

Publication Analysis

Top Keywords

ion suppression
12
atmospheric pressure
8
pressure matrix-assisted
8
matrix-assisted laser
8
laser desorption/ionization
8
ion source
8
ap-maldi sources
8
laser spot
8
spot size
8
mouse brain
8

Similar Publications

Enhancing battery longevity by regulating the solvation chemistry of organic iodide.

Angew Chem Int Ed Engl

December 2024

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.

View Article and Find Full Text PDF

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Cancer sarcopenia is highly prevalent in patients with advanced cancer, which is closely related to the disease prognosis. Overcoming cancer sarcopenia is important for cancer treatment. Cystine and theanine (CT), antioxidant amino acids, have been applied to the nutritional intervention of various diseases but their effects remain unclear on cancer sarcopenia.

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Brassinosteroid Enhances Cucumber Stress Tolerance to NaHCO by Modulating Nitrogen Metabolism, Ionic Balance and Phytohormonal Response.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Under NaHCO stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na accumulation in cucumber plants, thereby decreasing the Na/K, Na/Mg, and Na/Ca ratios. This mitigation was accompanied by elevated concentrations of K, Ca, and Mg, as well as enhanced expression of the and genes. In addition, the activities of plasma membrane H-ATPase, vesicular membrane H-ATPase, and vesicular membrane H-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!