Background: Despite current preventive strategies, bacterial contamination of platelets is the highest residual infectious risk in transfusion. Bacteria can grow from an initial concentration of 0.03-0.3 colony-forming units (CFUs)/mL up to 10 to 10 CFUs/mL over the product shelf life. The aim of this study was to develop a cost-effective approach for an early, rapid, sensitive, and generic detection of bacteria in platelet concentrates.
Study Design And Methods: A large panel of bacteria involved in transfusion reactions, including clinical isolates and reference strains, was established. Sampling was performed 24 hours after platelet spiking. After an optimized culture step for increasing bacterial growth, a microbead-based immunoassay allowed the generic detection of bacteria. Antibody production and immunoassay development took place exclusively with bacteria spiked in fresh platelet concentrates to improve the specificity of the test.
Results: Antibodies for the generic detection of either gram-negative or gram-positive bacteria were selected for the microbead-based immunoassay. Our approach, combining the improved culture step with the immunoassay, allowed sensitive detection of 1 to 10 CFUs/mL for gram-negative and 1 to 10 CFUs/mL for gram-positive species.
Conclusion: In this study, a new approach combining bacterial culture with immunoassay was developed for the generic and sensitive detection of bacteria in platelet concentrates. This efficient and easily automatable approach allows tested platelets to be used on Day 2 after collection and could represent an alternative strategy for reducing the risk of transfusion-transmitted bacterial infections. This strategy could be adapted for the detection of bacteria in other cellular products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.15019 | DOI Listing |
PLoS Pathog
January 2025
The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology and Hygiene, Mymensingh, Bangladesh.
Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Arbovirology Unit, University of Ibadan, Ibadan, Nigeria.
Crimean-Congo haemorrhagic fever virus (CCHFV), a Biosafety level 4 pathogen transmitted by ticks, causes severe haemorrhagic diseases in humans but remains clinically silent in animals. Over the past forty years, Nigeria lacks comprehensive genetic data on CCHFV in livestock and ticks. This study aimed to identify and characterize CCHFV strains in cattle and their Hyalomma ticks, the primary vector, in Kwara State, Nigeria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!