C-O Bond Dissociation and Induced Chemical Ionization Using High Energy (CO) Gas Cluster Ion Beam.

J Am Soc Mass Spectrom

Chemistry Department, The Pennsylvania State University, 215 Chemistry Building, University Park, PA, 16802, USA.

Published: March 2019

AI Article Synopsis

Article Abstract

A gas cluster ion beam (GCIB) source, consisting of CO clusters and operating with kinetic energies of up to 60 keV, has been developed for the high resolution and high sensitivity imaging of intact biomolecules. The CO molecule is an excellent molecule to employ in a GCIB source due to its relative stability and improved focusing capabilities, especially when compared to the conventionally employed Ar cluster source. Here we report on experiments aimed to examine the behavior of CO clusters as they impact a surface under a variety of conditions. Clusters of (CO) (n = 2000~10,000) with varying sizes and kinetic energies were employed to interrogate both an organic and inorganic surface. The results show that C-O bond dissociation did not occur when the energy per molecule is less than 5 eV/n, but that oxygen adducts were seen in increasing intensity as the energy is above 5 eV/n, particularly, drastic enhancement up to 100 times of oxygen adducts was observed on Au surface. For Irganox 1010, an organic surface, oxygen containing adducts were observed with moderate signal enhancement. Molecular dynamics computer simulations were employed to test the hypothesis that the C-O bond is broken at high values of eV/n. These calculations show that C-O bond dissociation occurs at eV/n values less than the C-O bond energy (8.3 eV) by interaction with surface topological features. In general, the experiments suggest that the projectiles containing oxygen can enhance the ionization efficiency of surface molecules via chemically induced processes, and that CO can be an effective cluster ion source for SIMS experiments. Graphical Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417932PMC
http://dx.doi.org/10.1007/s13361-018-2102-zDOI Listing

Publication Analysis

Top Keywords

c-o bond
20
bond dissociation
12
cluster ion
12
oxygen adducts
12
gas cluster
8
ion beam
8
gcib source
8
kinetic energies
8
adducts observed
8
surface
6

Similar Publications

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Selectivity control by zeolites during methanol-mediated CO hydrogenation processes.

Chem Soc Rev

January 2025

Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.

The thermocatalytic conversion of CO with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites.

View Article and Find Full Text PDF

In this study, we explore the potential of the difluoro(trifluoromethoxy)methyl group, CF-O-CF, an underexplored but promising structural analog of the trifluoromethoxy group (OCF). This moiety offers unique electronic properties and enhanced chemical stability due to its multiple C-F bonds, along with the added advantage of C-O bond cleavage, making it an attractive option in fluorine chemistry. We have succeeded in synthesizing difluoro(trifluoromethoxy)methyl compounds radical amino- and hydroxy-trifluoromethoxylations of β,β-difluorostyrenes.

View Article and Find Full Text PDF

Insight into photocatalytic CO reduction on TiO-supported Cu nanorods: a DFT study on the reaction mechanism and selectivity.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.

View Article and Find Full Text PDF

Temperature-dependent pathways in carbon dioxide electroreduction.

Sci Bull (Beijing)

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO electroreduction over Cu catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!