New 3,5-dimethylorsellinic acid-based meroterpenoids with BACE1 and AchE inhibitory activities from Aspergillus terreus.

Org Biomol Chem

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.

Published: November 2018

Chemical investigation of the extracts of Aspergillus terreus resulted in the identification of terreusterpenes A-D (1-4), four new 3,5-dimethylorsellinic acid-based meroterpenoids. The structures and absolute configurations of 1-4 were elucidated by spectroscopic analyses including HRESIMS and 1D- and 2D-NMR, chemical conversion, and single crystal X-ray diffraction. Terreusterpenes A (1) and B (2) featured 2,3,5-trimethyl-4-oxo-5-carboxy tetrahydrofuran moieties. Terreusterpene D (4) was characterized by a 4-hydroxy-3-methyl gamma lactone fragment that was generated by accident from the rearrangement of 3 in a mixed tetrahydrofuran-H2O-MeOH solvent. All these compounds were evaluated for the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and acetylcholinesterase (AchE) inhibitory activities. Among them, compounds 1 and 2 showed potentially significant BACE1 inhibitory activity, with IC50 values of 5.98 and 11.42 μM, respectively. Interestingly, compound 4 exhibited promising BACE1 and AchE inhibitory activities, with IC50 values of 1.91 and 8.86 μM, respectively, while 3 showed no such activity. Taken together, terreusterpenes A and B could be of great importance for the development of new BACE1 inhibitors, while terreusterpene D could serve as the first dual-targeted 3,5-dimethylorsellinic acid-based meroterpenoid for the treatment of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8ob02741bDOI Listing

Publication Analysis

Top Keywords

35-dimethylorsellinic acid-based
12
ache inhibitory
12
inhibitory activities
12
acid-based meroterpenoids
8
bace1 ache
8
aspergillus terreus
8
ic50 values
8
bace1
5
meroterpenoids bace1
4
inhibitory
4

Similar Publications

Tuberculous meningitis diagnosis and treatment: classic approaches and high-throughput pathways.

Front Immunol

January 2025

Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha, Changsha, China.

Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity.

View Article and Find Full Text PDF

Site-Selective Modification and Labeling of Native RNA.

Chemistry

January 2025

National University of Singapore, Chemistry, 4 Science Drive 2, S9-12-01G, 117544, Singapore, SINGAPORE.

Ribonucleic acid (RNA) plays a pivotal role in regulating biological processes within living systems, with modified nucleosides serving as critical modulators of various aspects of biological functions. Therefore, the development of efficient methodologies for late-stage, site-selective RNA modification is of considerable interest, as it facilitates the functional exploration of RNA chemical modifications and their implications for therapeutic applications. Precise RNA modification holds significant promise for the treatment of genetic diseases by enabling the correction of mutated nucleobases to their wild-type forms.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Modification of Liposomal Properties by an Engineered Gemini Surfactant.

Langmuir

January 2025

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.

Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.

View Article and Find Full Text PDF

Leveraging Next-Generation Sequencing Application from Identity to Purity Profiling of Nucleic Acid-Based Products.

Pharmaceutics

December 2024

Gennova Biopharmaceuticals Ltd., ITBT Park, Hinjawadi Phase 2 Rd, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411057, India.

: The nucleic acid-based product (NAP) portfolio is expanding continuously and provides safer curative options for many disease indications. Nucleic acid-based products offer several advantages compared to proteins and virus-based products. They represent an emerging field; thus, their quality control and regulatory landscape is evolving to ensure adequate quality and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!