Delivery of RNAi-mediating shRNA molecules for gene silencing via bacteria, i.e. by transkingdom RNAi (tkRNAi) technology, is suggested to be a powerful alternative technique. In this work, the efficiency of bacterial delivery of shRNAs directed against HPV16-E7-specific mRNA to oral squamous carcinoma cells (OSCCs) was evaluated. E. coli were transfected with a plasmid encoding the inv locus and the Hlya gene to enable the bacteria to enter carcinoma cells and to escape from endocytotic vesicles. The bacterial penetration to the target cells was confirmed by DAPI staining. The HPV16-E7 mRNA expression in bacteria-treated OSCCs dropped to 61% of the controls as measured by qRT-PCR. Corresponding inhibition of the HPV16-E7 protein was confirmed by western blotting. The IC of bacteria-treated OSCCs was reduced to more than 75%. Flow cytometry assays showed higher total apoptosis and caspase-3 activation (6.6-fold and 8.4-fold respectively) in OSCCs following exposure to anti-HPV-E7  bacteria compared to anti-GFP bacteria (2-fold and 2.9-fold, respectively). In conclusion, it was demonstrated for the first time that tkRNAi technology is also useful for treatment of squamous carcinoma cells. Anti-HPV16-E7 shRNA-encoding bacteria can efficiently deliver RNAi effectors to OSCCs mediating a strong and specific gene silencing associated with triggering cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-018-0054-xDOI Listing

Publication Analysis

Top Keywords

carcinoma cells
16
squamous carcinoma
12
oral squamous
8
gene silencing
8
tkrnai technology
8
bacteria-treated osccs
8
cells
5
bacteria
5
osccs
5
bacteria-mediated delivery
4

Similar Publications

Purpose: The NAB2::STAT6 fusion is predominantly associated with solitary fibrous tumors (SFTs) and is utilized in diagnosing SFTs through nuclear STAT6 protein overexpression. Recent studies expanded the phenotypic spectrum of NAB2::STAT6 rearranged neoplasms, including adamantinoma-like and teratocarcinosarcoma-like phenotypes. We report a case of a NAB2::STAT6 rearranged epithelial tumor exhibiting sebaceous differentiation in the parotid gland.

View Article and Find Full Text PDF

Hepatoma cell-derived exosomal SNORD52 mediates M2 macrophage polarization by activating the JAK2/STAT6 pathway.

Discov Oncol

January 2025

Department of Hepatobiliary Pancreatic Splenic Surgery, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.

Background: A recent study revealed the oncogenic role of box C/D small nucleolar RNA 52 (SNORD52) in hepatocellular carcinoma (HCC) by facilitating the aggressive phenotypes of hepatoma cells. However, the potential role of exosomal SNORD52 in macrophage polarization during HCC progression remains poorly understood.

Methods: Exosomes were isolated from hepatoma cells.

View Article and Find Full Text PDF

Background: Fumarate hydratase-deficient renal cell carcinoma (FHRCC) is an aggressive carcinoma that typically presents as advanced-stage disease. Prompt recognition of FHRCC is critical for appropriate clinical care and genetic counseling for patients and family members. However, diagnosing FHRCC from cytology specimens is challenging, with limited characterization and no reports describing prospectively identified cases.

View Article and Find Full Text PDF

Aberrant expression of grainyhead-like transcription factor 3 (GRHL3) has been extensively reported in the development and progression of several squamous cell carcinomas, such as cutaneous, head and neck, and esophageal squamous cell carcinoma. However, the clinical significance and biological roles of GRHL3 in lung squamous cell (LUSC) carcinoma are largely unclear. Herein, we report that GRHL3 was significantly upregulated in lung squamous epithelium of LUSC tissues, bronchiole, and bronchus.

View Article and Find Full Text PDF

Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!