Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoscale capsule-type particles with stimuli-respondent transport of chemical species into and out of the capsule are of significant technological interest. We describe the facile synthesis, properties, and applications of a temperature-responsive silica-poly( N-isopropylacrylamide) (PNIPAM) composite consisting of hollow silica particles with ordered mesoporous shells and a complete PNIPAM coating layer. These composites start with highly monodisperse, hollow mesoporous silica particles fabricated with precision using a template-driven approach. The particles possess a high specific surface area (1771 m/g) and large interior voids that are accessible to the exterior environment through pore channels of the silica shell. An exterior PNIPAM coating provides thermoresponsiveness to the composite, acting as a gate to regulate the uptake and release of functional molecules. Uptake and release of a model compound (rhodamine B) occurs at temperatures below the lower critical solution temperature (LCST) of 32 °C, while the dehydrated hydrophobic polymer layer collapses over the particle at temperatures above the LCST, leading to a shutoff of uptake and release. These transitions are also manifest at an oil-water interface, where the polymer-coated hollow particles stabilize oil-in-water emulsions at temperatures below the LCST and destabilize the emulsions at temperatures above the LCST. Cryogenic scanning electron microscopy indicates patchlike particle structures at the oil-water interface of the stabilized emulsions. The silica-PNIPAM composite therefore couples advantages from both the hollow mesoporous silica structure and the thermoresponsive polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b02714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!