Characterization of TrxC, an Atypical Thioredoxin Exclusively Present in Cyanobacteria.

Antioxidants (Basel)

Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av/Américo Vespucio 49, E-41092 Sevilla, Spain.

Published: November 2018

Cyanobacteria form a diverse group of oxygenic photosynthetic prokaryotes considered to be the antecessor of plant chloroplast. They contain four different thioredoxins isoforms, three of them corresponding to , and type present in plant chloroplast, while the fourth one (named TrxC) is exclusively found in cyanobacteria. TrxC has a modified active site (WCGLC) instead of the canonical (WCGPC) present in most thioredoxins. We have purified it and assayed its activity but surprisingly TrxC lacked all the classical activities, such as insulin precipitation or activation of the fructose-1,6-bisphosphatase. Mutants lacking or over-expressing it were generated in the model cyanobacterium sp. PCC 6803 and their phenotypes have been analyzed. The mutant grew at similar rates to WT in all conditions tested although it showed an increased carotenoid content especially under low carbon conditions. Overexpression strains showed reduced growth under the same conditions and accumulated lower amounts of carotenoids. They also showed lower oxygen evolution rates at high light but higher Fv'/Fm' and Non-photochemical-quenching (NPQ) in dark adapted cells, suggesting a more oxidized plastoquinone pool. All these data suggest that TrxC might have a role in regulating photosynthetic adaptation to low carbon and/or high light conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262485PMC
http://dx.doi.org/10.3390/antiox7110164DOI Listing

Publication Analysis

Top Keywords

exclusively cyanobacteria
8
plant chloroplast
8
low carbon
8
high light
8
characterization trxc
4
trxc atypical
4
atypical thioredoxin
4
thioredoxin exclusively
4
cyanobacteria cyanobacteria
4
cyanobacteria form
4

Similar Publications

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Cultured meat technology is a form of cellular agriculture where meat is produced from animal cells grown in a lab, instead of raising and slaughtering animals. This technology relies heavily on fetal bovine serum (FBS) in cell media; hence, production is costly and contributes significantly to ammonia and greenhouse gas emissions. Achieving the successful commercialization of cell-cultured food requires the critical resolution of manufacturing cost and safety concerns.

View Article and Find Full Text PDF

Variable cyanobacterial death modes caused by ciprofloxacin in the aquatic environment: Prioritizing antibiotic-photosynthetic protein interactions for risk assessment.

Water Res

March 2025

Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China. Electronic address:

Article Synopsis
  • * At lower concentrations (3 μg/L), CIP primarily targets the PSII D1 protein, which leads to cell death through apoptosis-like mechanisms, while at higher concentrations (8 μg/L), it additionally affects PSI proteins, causing a switch to a different cell death pathway.
  • * The study reveals how different antibiotic levels can change their lethal effects on photosynthetic organisms, highlighting the need for better risk assessment practices regarding the impact of antibiotics in aquatic environments.
View Article and Find Full Text PDF

A unicellular cyanobacterium relies on sodium energetics to fix N.

Nat Commun

November 2024

Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China.

Article Synopsis
  • Diazotrophic cyanobacteria typically fix nitrogen gas, but are rarely found in coastal areas with limited nitrogen, leading to an ecological mystery.
  • Research shows that a specific coastal cyanobacterium, Cyanothece sp. ATCC 51142 (now called Crocosphaera subtropica), requires sodium ions for nitrogen fixation and is inhibited at low sodium chloride concentrations.
  • Despite producing nitrogenase enzymes when sodium is absent, the organism fails to fix nitrogen or grow due to low ATP supply, indicating that sodium plays a crucial role in its energy metabolism for N fixation.
View Article and Find Full Text PDF

Coral diseases contribute to the worldwide loss of coral reefs, with the Black Band Disease (BBD) being a prominent example. BBD is an infectious condition with lesions with a pigmented mat composed of cyanobacteria, sulphate-reducing, sulphide-oxidizing, and heterotrophic bacteria. We compared the heterotrophic bacterial communities of healthy and BBD-affected colonies of the Caribbean coral Orbicella faveolata using culture-dependent and -independent techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!