Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique.

Bioinformatics

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.

Published: June 2019

Motivation: DNA replication is a key step to maintain the continuity of genetic information between parental generation and offspring. The initiation site of DNA replication, also called origin of replication (ORI), plays an extremely important role in the basic biochemical process. Thus, rapidly and effectively identifying the location of ORI in genome will provide key clues for genome analysis. Although biochemical experiments could provide detailed information for ORI, it requires high experimental cost and long experimental period. As good complements to experimental techniques, computational methods could overcome these disadvantages.

Results: Thus, in this study, we developed a predictor called iORI-PseKNC2.0 to identify ORIs in the Saccharomyces cerevisiae genome based on sequence information. The PseKNC including 90 physicochemical properties was proposed to formulate ORI and non-ORI samples. In order to improve the accuracy, a two-step feature selection was proposed to exclude redundant and noise information. As a result, the overall success rate of 88.53% was achieved in the 5-fold cross-validation test by using support vector machine.

Availability And Implementation: Based on the proposed model, a user-friendly webserver was established and can be freely accessed at http://lin-group.cn/server/iORI-PseKNC2.0. The webserver will provide more convenience to most of wet-experimental scholars.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bty943DOI Listing

Publication Analysis

Top Keywords

origin replication
8
saccharomyces cerevisiae
8
two-step feature
8
feature selection
8
dna replication
8
will provide
8
identify origin
4
replication
4
replication saccharomyces
4
cerevisiae two-step
4

Similar Publications

Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae.

Nat Commun

January 2025

Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.

The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.

View Article and Find Full Text PDF

SSB promotes DnaB helicase passage through DnaA complexes at the replication origin oriC for bidirectional replication.

J Biochem

January 2025

Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.

View Article and Find Full Text PDF

[Activity of flavonoids of natural origin on SARS-CoV-2 infections].

Postepy Biochem

December 2024

Katedra Biotechnologii, Wydział Nauk Biologicznych, Uniwersytet Zielonogórski.

Coronaviruses cause diseases of the respiratory tract, gastrointestinal tract and central nervous system, which threaten human health and contribute to economic losses. Innovative production technologies make it possible to use bioactive compounds as antiviral agents. Most fruits, vegetables and plant products contain flavonoids.

View Article and Find Full Text PDF

Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (- and -) structurally related to clofazimine, chloroquine, and benzimidazole derivatives. Thus, we deemed it worthwhile to test them against the replication of SARS-CoV-2, together with a few other compounds (, and -), which showed some analogy to miscellaneous anti-coronavirus agents.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is one of the most prevalent viruses that causes severe acute lower respiratory tract infections (ALRTIs) in the elderly and young children. There is no specific drug to treat RSV, only a broad-spectrum antiviral, ribavirin, which is only used in critical cases. Our research group is investigating antiviral agents of natural origin, such as coumarins and flavonoids, that may help reduce or prevent RSV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!