Purpose: The aim of this study was to determine the possibility and extent of artifact reduction by an optimized use of cone beam computed tomography (CBCT) parameter configuration (geometric resolution, implant geometric parameters, and image analyses). It furthermore sought to determine the distance from correctly reproduced bone tissue to an implant, where the grayscale values are equal to the pre-implantation values.

Materials And Methods: Titanium implants were inserted into pig tibia under standardized conditions. CBCT investigations in the form of bone density mapping were performed under various CBCT settings and implantation situations. The circumference of the implants was measured in order to determine the extent of metal artifacts. This was done by determining grayscale and comparing it to the bone area prior to implantation.

Results: Using CBCT to determine bone density postimplantation showed a correlation in dependence of CBCT parameter configuration. Higher resolution led to a better detection of correct bone density values in the peri-implant region. Normal bone density values can be recognized at a distance of 370 μm from the implant surface, when the spatial resolution is 125 μm. Therefore, higher resolution in CBCT is accompanied by an improved bone detection in peri-implant bone, despite the presence of metal artifacts. Peri-implant bone defects that extend 400 μm around implants were reliably detected by using a spatial resolution of 125 μm. In specimens, where multiple implants are present in one line, pronounced artifact formations were present. The artifacts were visible as a combination of streak-like hardening and extinction effects.

Conclusion: Bone geometric data and density values may be determined correctly in close proximity to the implant surface, and can detect peri-implant bone defects. When multiple implants are placed, the implant radiation direction geometry must be considered.

Download full-text PDF

Source
http://dx.doi.org/10.11607/jomi.6623DOI Listing

Publication Analysis

Top Keywords

peri-implant bone
16
bone density
16
bone
13
higher resolution
12
density values
12
cone beam
8
beam computed
8
computed tomography
8
accompanied improved
8
improved bone
8

Similar Publications

Effects of thread design on soft and hard tissue healing around implants in lipopolysaccharide-induced peri-implantitis-like lesions in rat maxillae.

J Oral Biosci

January 2025

Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan. Electronic address:

Objectives: This study investigated the effects of thread design on the soft and hard tissues around implants in rat maxillary peri-implantitis-like lesions.

Methods: Fourteen, 9-week-old, female Wistar rats were used in this study. Two types of grade IV titanium tissue-level implants with a standard V-shape and buttress threads were prepared (control and test implants, respectively).

View Article and Find Full Text PDF

Periodontal Endoscopy for Mechanical Debridement in the Non-Surgical Management of Peri-Implantitis: A Narrative Review.

J Clin Med

January 2025

Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Binieckiego 6 St., 02-097 Warsaw, Poland.

: The aim of the present narrative review is to synthesize the available scientific evidence on the effects of submarginal instrumentation with periodontal endoscopy and evaluate its' potential efficacy in terms of the non-surgical therapy of peri-implantitis. : The literature search was performed via electronic databases, including PubMed, Web of Science, Cochrane, and Scopus, and was supplemented by manual searching. A literature review was conducted addressing the following PICOS questions: (1) What is the efficacy of non-surgical submarginal instrumentation of the implant surface with the aid of a periodontal endoscope in patients with peri-implantitis? (2) What is the efficacy of non-surgical subgingival instrumentation performed with the aid of a periodontal endoscope compared with conventional subgingival instrumentation in patients with periodontitis, in terms of clinical parameters and patient-reported outcomes? Mechanical decontamination of the implant surface is crucial for resolving inflammation and arresting further bone loss.

View Article and Find Full Text PDF

Objective: To compare the influence of different emergence profile of implants in mandibular molar on the peri-implant soft tissue.

Methods: Forty-four implants were divided into two equal groups by mucosal thickness, ≥2 mm (group A) or < 2 mm (group B), and were randomly included in the test group and the control group. In the control group, the patients were treated by a prosthesis with no transmucosal modifications (subgroups A1 and B1).

View Article and Find Full Text PDF

Purpose: The study assessed the clinical outcomes following treatment of peri-implant mucositis using Er:YAG laser or an ultrasonic device over six months. Patients' experience of pain, aesthetics, and Quality of life were further assessed.

Methods: One dental implant, per included patient, diagnosed with peri-implant mucositis underwent treatment with an Er:YAG laser (test) or an ultrasonic scaler (control) randomly.

View Article and Find Full Text PDF

The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!