A compact UHF antenna has been presented in this paper for nanosatellite space mission. A square ground plane with slotted rectangular radiating element have been used. Coaxial probe feeding is used to excite. The rectangular slot of the radiating patch is responsible for resonating at lower UHF bands. One of the square faces of the nanosatellite structure works as the ground plane for the slotted radiating element. The fabricated prototype of the proposed antenna has achieved an impedance bandwidth (S11< -10dB) of 7.0 MHz (398 MHz- 405 MHz) with small size of 97 mm× 90 mm radiating element. The overall ground plane size is 100 mm × 100 mm × 0.5 mm. The proposed antenna has achieved a gain of 1.18 dB with total efficiency of 62.5%. The proposed antenna addresses two design challenges of nanosatellite antenna, (a) assurance of the placement of solar panel beneath the radiating element; (b) providing about 50% open space for solar irradiance to pass onto the solar panel, enabling the solar panel to achieve up to 93.95% of power under of normal conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235264PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205587PLOS

Publication Analysis

Top Keywords

solar panel
16
radiating element
16
ground plane
12
proposed antenna
12
uhf antenna
8
nanosatellite space
8
space mission
8
plane slotted
8
antenna achieved
8
antenna
6

Similar Publications

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Climate change and food security nexus in Ghana: The role of renewable energy.

Sci Total Environ

January 2025

Department of Agribusiness Management and Consumer Studies, University of Energy and Natural Resources, Sunyani, Ghana; Department of Applied Agriculture, Central University of Punjab, India.

Climate change is aggravating hunger, which is miserable in Sub-Saharan African nations like Ghana. Yet evidence of the effect of climatic variables on hunger, particularly multidimensional food security, is less illuminated in Ghana. Moreover, the decoupling effect of renewable energy on emissions and food security is rare in the Ghanaian context.

View Article and Find Full Text PDF

Installing photovoltaic systems (PVs) on building rooftops is a viable and sustainable alternative to meet the growing demand for electricity in cities. This work develops a methodology that uses LiDAR (laser imaging detection and ranging) technology and roof footprints to obtain a three-dimensional representation of the rooftops in the urban centre of Santa Isabel (Azuay, Ecuador). This allowed the determination of characteristics such as area, slope, orientation, and received solar radiation, making it possible to calculate the rooftop's theoretical, technical, and economic photovoltaic potential.

View Article and Find Full Text PDF

Dust removal on solar panels of exploration rovers using Chladni patterns.

Sci Rep

January 2025

Department of Aeronautical and Astronautical Engineering, Korea Aerospace University, Goyang, 10540, Republic of Korea.

The buildup of dust on solar panels has significantly reduced the operational lifespan and mission performance of exploration rovers, and traditional dust removal techniques have proven inadequate for the Martian environment. The present study proposes a novel method for removing dust from the solar panels of Mars exploration rovers using Chladni patterns, addressing the persistent issue of efficiency loss due to Martian dust accumulation. To overcome these challenges, the proposed method leveraged Chladni patterns, generated by specific frequencies, to effectively clear dust from the panels.

View Article and Find Full Text PDF

This study focuses on generating high-resolution annual solar energy potential maps (ASMs) using global Digital Elevation Models (DEMs) to aid in solar panel placement, especially in urban areas. A framework was developed to enhance the resolution of these maps. Initially, the accuracy of ASMs derived from various DEMs was compared with LiDAR-derived ASMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!