Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Incorporation of the triad of redox activity, hemilability, and proton responsivity into a single ligand scaffold is reported. Due to this triad, the complexes Fe(PDI)(CO) (3) and Fe(PDI)(CO) (4) display 40-fold enhancements in the initial rate of NO reduction, with respect to Fe(PDI)(CO) (7). Utilizing the proper sterics and p K of the pendant base(s) to introduce hemilability into our ligand scaffolds, we report unusual {FeNO} mononitrosyl iron complexes (MNICs) as intermediates in the NO reduction reaction. The {FeNO} species behave spectroscopically and computationally similar to {FeNO}, an unusual intermediate-spin Fe(III) coupled to triplet NO and a singly reduced PDI ligand. These {FeNO} MNICs facilitate enhancements in the initial rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668709 | PMC |
http://dx.doi.org/10.1021/jacs.8b08520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!