Introduction: The number of patients who seek orthodontic treatment that may have a history of tooth bleaching is increasing over the time. Bleaching may influence the decrease of the bond strength of orthodontic brackets.

Objective: To determine and prove the effect of mangosteen peel (MP) extract to reverse the reduced shear bond strength (SBS) of orthodontic brackets after bleaching.

Methods: A total of 150 maxillary first premolar teeth were randomly divided into 6 experimental groups as follow (n=25): negative-control (N: no bleaching), positive-control (P: bleaching + no treatment), and the treatment groups (bleaching + 10% sodium ascorbate (SA), 10% (MP-10), 20% (MP-20) and 40% (MP-40) MP extract gel). After treatment, the brackets were bonded with the resin-modified glass ionomer cement, SBS testing was performed using universal testing machine, and the adhesive remnant index (ARI) was examined using stereoscopic microscope after debonding. The SBS data were analyzed by analysis of variance (Anova) and the Tukey test. For the ARI, the Kruskal-Wallis test was performed.

Result: There was significant SBS difference (p< 0.001) between various groups. The group without bleaching showed significantly higher SBS (8.19 ± 2.26 MPa) compared to others, while SBS in the group treated with 40% MP gel was significantly higher (7.93 ± 1.92 MPa) than other groups treated with antioxidants. The failure of orthodontic brackets bonded after bleaching and treatment using MP extract occurred at the enamel-adhesive interface.

Conclusion: The application of MP extract as an antioxidant after bleaching was effective in reversing the reduced shear bond strength of orthodontic brackets after bleaching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266322PMC
http://dx.doi.org/10.1590/2177-6709.23.5.058-064.oarDOI Listing

Publication Analysis

Top Keywords

bond strength
16
orthodontic brackets
16
shear bond
12
strength orthodontic
12
brackets bonded
12
bleaching
9
mangosteen peel
8
peel extract
8
extract antioxidant
8
reduced shear
8

Similar Publications

We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.

View Article and Find Full Text PDF

Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents.

J Phys Chem Lett

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.

View Article and Find Full Text PDF

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

Nature and stability of the chemical bond in H3C-XHn (XHn = CH3, NH2, OH, F, Cl, Br, I).

J Chem Phys

January 2025

Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands, https://www.theochem.nl.

We have quantum chemically analyzed the trends in bond dissociation enthalpy (BDE) of H3C-XHn single bonds (XHn = CH3, NH2, OH, F, Cl, Br, I) along three different dissociation pathways at ZORA-BLYP-D3(BJ)/TZ2P: (i) homolytic dissociation into H3C∙ + ∙XHn, (ii) heterolytic dissociation into H3C+ + -XHn, and (iii) heterolytic dissociation into H3C- + +XHn. The associated BDEs for the three pathways differ not only quantitatively but, in some cases, also in terms of opposite trends along the C-X series. Based on activation strain analyses and quantitative molecular orbital theory, we explain how these differences are caused by the profoundly different electronic structures of, and thus bonding mechanisms between, the resulting fragments in the three different dissociation pathways.

View Article and Find Full Text PDF

We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!