Alkynylplatinum(II) terpyridine complexes have been increasingly explored since the previous decades, mainly arising from their intriguing photophysical properties and aggregation affinities associated with their extensive Pt(II)···Pt(II) and π-π stacking interactions. Through molecular engineering, one can modulate their fundamental properties and assembly behavior by introduction of various functional groups and structural features. They can therefore serve as ideal candidates to construct metal complex-based molecular architectures to provide an alternative to organic compounds. The metal-based framework can be simultaneously built from predetermined building blocks, giving rise to their well-defined, unique, and discrete natures for molecular recognition. The individual constituents can contribute to molecular architectures with their integrated properties, allowing the manipulation of the various noncovalent intermolecular forces and interactions for selective guest capture. In this Account, our recent progress in the development of these metallomolecular frameworks based on the alkynylplatinum(II) terpyridine system and their recognition properties toward different guest molecules will be presented. Phosphorescent molecular tweezers have been constructed from the alkynylplatinum(II) terpyridine moiety to demonstrate host-guest interactions with cationic, charge-neutral and anionic platinum(II), palladium(II), gold(I), and gold(III) complexes and their binding affinities were found to be perturbed by different metal···metal, π-π and electrostatic interactions. The host-guest assembly process has also resulted in dramatic color changes, together with the turning on of near-IR (NIR) emissions as a result of extensive Pt(II)···Pt(II) interactions. Further work has also been performed to demonstrate that the tweezers can selectively recognize π-surfaces of different planar π-conjugated organic guests. The framework of molecular tweezers has been extended to a double-decker tweezers structure, or a triple-decker structure, which can bind two equivalents of square-planar platinum(II) guests cooperatively to induce a significant color change in solution, representing rare examples of discrete Magnus' green-like salts. By the approaches of structural modifications, we have further modulated the host architecture from molecular tweezers to molecular rectangles. The rectangles have been found to show selective encapsulation of different transition metal complex guests based on the size and steric environment of the host cavity. The molecular rectangles also exhibit reversible host-guest association, in which guest capture and ejection processes can be manipulated by the pH environment, illustrating a potential approach for precise and smart delivery of therapeutic reagents to the slightly more acidic cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.8b00339 | DOI Listing |
Nanoscale Adv
March 2024
Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
Recently, cooperative supramolecular polymerization has garnered considerable attention due to its significant potential for enabling controlled chain-growth polymerization, which offers a route to achieving a well-defined degree of polymerization and low polydispersity. In this study, we synthesized two distinct alkynylplatinum(ii) complexes, one bearing a saturated long alkyl chain (Pt-Sat-C18) and another containing a diacetylene moiety within a long alkyl chain (Pt-DA-C25). Spectroscopic analyses revealed that Pt-Sat-C18 undergoes supramolecular polymerization an isodesmic pathway, while Pt-DA-C25 assembles cooperatively.
View Article and Find Full Text PDFDalton Trans
February 2023
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
In this work, the aggregation-induced photoluminescence emission (AIPE) of three water-soluble heterobimetallic Ir-Pt complexes was reported with insight into their photophysical and electrochemical properties and imaging of bacterial cells. An alkyne appended Schiff's base L, bridges bis-cyclometalated iridium(III) and platinum(II) terpyridine centre. The Schiff's base (N-N fragment) serves as the ancillary ligand to the iridium(III) centre, while the alkynyl end is coordinated to platinum(II).
View Article and Find Full Text PDFJ Am Chem Soc
January 2021
Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.
A cationic water-soluble dipicolylamine (DPA)-containing alkynylplatinum(II) terpyridine complex has been synthesized and employed as a dual-selective probe for the detection of cations and anions. The complex was shown to exhibit a strong binding affinity toward Zn, whereas the zinc-bound adduct was found to demonstrate the capability of recognizing pyrophosphate (PPi). As evidenced by molecular modeling and various spectroscopic and spectrometric studies, including HR-ESI mass spectrometry, NMR spectroscopy, PXRD measurements, and UV-vis absorption and emission spectroscopy, a PPi anion was found to be capable of bridging two zinc-bound complex molecules in a clip-shaped fashion, which was further oligomerized through intermolecular Pt···Pt and π-π stacking interactions to form nanofibers with a hexagonal columnar phase.
View Article and Find Full Text PDFJ Am Chem Soc
September 2020
Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.
Here we report the first two-dimensional (2D) supramolecular polymer, which has varying structure and function arising from the perturbation of noncovalent metal···metal interactions in response to acid-base stimuli. This 2D assembly possesses a positively charged, honeycomb-like nanostructure consisting of trinuclear alkynylplatinum(II) terpyridine complexes appended with acid-sensitive dimethylamino groups. Upon addition of acids and bases, reversible switching mediated by protonation and deprotonation of dimethylamino and dimethylammonium moieties intrinsically alters the positive charge density of the constituent cationic units, which causes interior cavities to adaptively adjust their size, accompanied by drastic photoluminescence changes.
View Article and Find Full Text PDFJ Am Chem Soc
August 2020
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
Fluorescent metallosupramolecules have received considerable attention due to their precisely controlled dimensions as well as the tunable photophysical and photochemical properties. However, phosphorescent analogues are still rare and limited to small structures with low-temperature phosphorescence. Herein, we report the self-assembly and photophysical studies of a giant, discrete metallosupramolecular concentric hexagon functionalized with six alkynylplatinum(II) bzimpy moieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!