Objectives: Rehabilitation of patients with chronic visuospatial neglect is underexplored, and little is known about neural mechanisms that can be exploited to promote recovery. In this study, we present data on resting-state functional connectivity within the dorsal attention network (DAN) in chronic neglect patients as they underwent training in a virtual reality (VR) environment that improved left-side awareness.
Methods: The study included 13 patients with visuospatial neglect persisting more than six months after a right-sided stroke. The patients underwent resting-state functional magnetic resonance imaging (fMRI). Scans were collected at baseline and after five weeks of intense training. We specifically examined resting-state functional connectivity within the DAN. In addition, using spatial concordance correlation, we compared changes in the spatial topology of the DAN with that of other networks.
Results: We found a longitudinal increase in interhemispheric functional connectivity between the right frontal eye field and the left intraparietal sulcus following training (before: 0.33 ± 0.17 [mean ± SD]; after: 0.45 ± 0.13; P = 0.004). The spatial concordance analyses indicated that training influenced the DAN connectivity more than any of the other networks.
Conclusion: Intense VR training that improved left-sided awareness in chronic stroke patients also increased sporadic interhemispheric functional connectivity within the DAN. Specifically, a region responsible for saccadic eye movement to the left became more integrated with the left posterior parietal cortex. These results highlight a mechanism that should be exploited in the training of patients with chronic visuospatial neglect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ane.13048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!