Using a previously developed inversion platform for functional cerebral medical imaging with ensemble Kalman filters, this work analyzes the sensitivity of the results with respect to different parameters entering the physical model and inversion procedure, such as the inlet flow rate from the heart, the choice of the boundary conditions, and the nonsymmetry in the network terminations. It also proposes an alternative low complexity construction for the covariance matrix of the hemodynamic parameters of a network of arteries including the circle of Willis. The platform takes as input patient-specific blood flow rates extracted from magnetic resonance angiography and magnetic resonance imaging (dicom files) and is applied to several available patients data. The paper presents full analysis of the results for one of these patients, including a sensitivity study with respect to the proximal and distal boundary conditions. The results notably show that the uncertainties on the inlet flow rate led to uncertainties of the same order of magnitude in the estimated parameters (blood pressure and elastic parameters) and that three-lumped parameters boundary conditions are necessary for a correct retrieval of the target signals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3170DOI Listing

Publication Analysis

Top Keywords

boundary conditions
12
inlet flow
8
flow rate
8
magnetic resonance
8
parameters
5
backward sensitivity
4
sensitivity analysis
4
analysis reduced-order
4
reduced-order covariance
4
covariance estimation
4

Similar Publications

This study examines the interplay between humble teacher leadership and student creative process engagement, grounded in Social Exchange Theory and Self-Determination Theory. Additionally, it analyzes the sequential mediating roles of student trust and psychological empowerment, as well as the moderating effect of proactive personality. Data were collected at three time points from 384 participants across Chinese universities and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with Smart PLS 4.

View Article and Find Full Text PDF

Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.

Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?

Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.

View Article and Find Full Text PDF

Accurate Reconstruction of Right Heart Shape and Motion From Cine-MRI for Image-Driven Computational Hemodynamics.

Int J Numer Method Biomed Eng

January 2025

Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università di Verona, Verona, Italy.

Accurate reconstruction of the right heart geometry and motion from time-resolved medical images is crucial for diagnostic enhancement and computational analysis of cardiac blood dynamics. Commonly used segmentation and/or reconstruction techniques, exclusively relying on short-axis cine-MRI, lack precision in critical regions of the right heart, such as the ventricular base and the outflow tract, due to its unique morphology and motion. Furthermore, the reconstruction procedure is time-consuming and necessitates significant manual intervention for generating computational domains.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Advanced liver preservation strategies could revolutionize liver transplantation by extending preservation time, thereby allowing for broader availability and better matching of transplants. However, developing new cryopreservation protocols requires exploration of a complex design space, further complicated by the scarcity of real human livers to experiment upon. We aim to create computational models of the liver to aid in the development of new cryopreservation protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!