Antibodies are a growing class of cancer immunotherapeutics that facilitate immune-cell-mediated killing of tumors. However, the efficacy and safety of immunotherapeutics are limited by transport barriers and poor tumor uptake, which lead to high systemic concentrations and potentially fatal side effects. To increase tumor antibody immunotherapeutic concentrations while decreasing systemic concentrations, local delivery vehicles for sustained antibody release are being developed. The focus of this review is to define the material properties required for implantable controlled antibody delivery and highlight the controlled-release strategies that are applicable to antibody immunotherapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201800579 | DOI Listing |
Pharmaceutics
January 2025
NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC).
Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect.
Pharmaceutics
January 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
The expression level of Programmed Death-Ligand 1 (PD-L1) determined by the immunohistochemical method is currently approved to test the potential efficacy of immune-checkpoint inhibitors and to candidate patients with Non-Small Cell Lung Cancer (NSCLC) for treatment with immunotherapeutic drugs. As part of the CORELAB (New prediCtivebiOmaRkers of activity and Efficacy of immune checkpoint inhibitors in advanced non-small cell Lung cArcinoma) project, aimed at identifying new predictive and prognostic biomarkers in NSCLC patients receiving immunotherapeutic drugs, we investigated the role of circulating tumor DNA (ctDNA) molecular characterization as an additional predictive biomarker. We analyzed plasma ctDNA by targeted Next Generation Sequencing in a subset of 50 patients at different time points.
View Article and Find Full Text PDFBiomolecules
January 2025
National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy.
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!