The phytoplankton community structure is potentially influenced by both environmental and spatial processes. In addition, the relative importance of these two processes to phytoplankton assemblage will be affected by hydrological connectivity. However, the impacts of anthropogenic activities on phytoplankton beta diversity and the relative importance of these two processes to phytoplankton are still poorly understood, especially in water conservation areas. Here, we examined the relative importance of local and regional environmental control and spatial structuring of phytoplankton communities in five rivers with different degrees of disturbance during wet and dry seasons. We found that community structure and local environmental conditions varied greatly in seasons and rivers. The reference river (with minimum disturbance) had the highest homogeneity of environmental conditions and phytoplankton assemblage, while the excessive disturbance rivers (sand mining activities) had the greatest environmental heterogeneity and species dissimilarity between sites. Variation partitioning analysis showed that the phytoplankton community variation was mainly explained by the spatial variables in the wet season (summer and autumn) and winter, while the local environmental variables explained the largest variation of phytoplankton community in the dry season (spring). However, broad-scale variables were selected by redundancy analysis in both dry and wet seasons, which indicates that long-distance scales always have low river connectivity, regardless of whether the river is overflowing or drying up. Local environmental processes explained the most variation in phytoplankton community within all of the rivers, suggesting that deterministic processes usually work on relatively small spatial scales. However, this effect would be weakened by anthropogenic activities, especially sand mining activities. We inferred that sand mining activities increased the environmental heterogeneity and species dissimilarity between sites by causing watercourse habitat patches and obstructing river connectivity. On the other hand, as the excessive disturbance, sand mining activities significantly reduced the species richness and abundance of phytoplankton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-3632-4 | DOI Listing |
J Hazard Mater
January 2025
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China. Electronic address:
Domoic acid (DA), a well-known marine neurotoxin, is produced by toxic Pseudo-nitzschia species. However, the knowledge of DA in Chinese coastal waters remains limited, and the primary biological sources in these waters are still unknown. In this study, 200 surface phytoplankton samples were collected during summer and spring, covering the entire Chinese coastline.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL. Electronic address:
Harmful algal blooms (HABs) cause severe economic and environmental impacts, including hypoxic events and the production of toxins and off-flavor compounds. Chemical treatments, such as copper sulfate pentahydrate (CuSO·5HO), are often used to mitigate the damaging effects of algal blooms. However, treatment effects are usually short-lived leading to waterbodies requiring repeated CuSO·5HO applications to control persistent algal blooms, particularly in highly eutrophic systems, such as aquaculture ponds or small agricultural impoundments.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA.
Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (K) of oxidative enzymes are orders of magnitude higher than respiratory K values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline.
View Article and Find Full Text PDFISME Commun
January 2025
Ifremer, Dyneco, F-29280 Plouzané, France.
Phytoplankton supports food webs in all aquatic ecosystems. Ecological studies highlighted the links between environmental variables and species successions . However, the role of life cycle characteristics on phytoplankton community dynamics remains poorly characterized.
View Article and Find Full Text PDFISME Commun
January 2025
Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.
Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!