Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite.

Environ Sci Pollut Res Int

School of Science, Shenyang University of Technology, Shenyang, 110870, Liaoning, China.

Published: January 2019

Bentonite is a porous clay material that shows good performance for adsorbing heavy metals and other pollutants for wastewater remediation. In our previous study, magnetic bentonite (M-B) was prepared to solve the separation problem and improve the operability. In this study, we investigated the influence of various parameters on the Pb(II) adsorption of M-B, and it showed effective performance. About 98.9% adsorption removal rate was achieved within 90 min at adsorbent dose of 10 g/L for initial Pb(II) concentration of 200 mg/L at 40 °C and pH 5. The adsorption kinetic fit well by the pseudo-second-order model, and also followed the intra-particle diffusion model up to 90 min. Moreover, adsorption data were successfully reproduced by the Langmuir isotherm; the maximum adsorption capacity was calculated as 80.40 mg/g. The mechanism of interaction between Pb(II) ions and M-B was ionic exchange, surface complexation, and electro-static interactions. Thermodynamics study indicated that the reaction of Pb(II) adsorption on M-B was endothermic and spontaneous; increasing the temperature promoted adsorption. This study was expected to provide a reference and theoretical basis for the treatment of Pb-containing wastewater using bentonite materials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3652-0DOI Listing

Publication Analysis

Top Keywords

adsorption
8
magnetic bentonite
8
pbii adsorption
8
adsorption m-b
8
removal pbii
4
pbii aqueous
4
aqueous solutions
4
solutions adsorption
4
adsorption magnetic
4
bentonite
4

Similar Publications

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Pt ( = 1, 3, and 4) Cluster-Modified MoSe Nanosheets: A Potential Sensing and Scavenging Candidate for Lithium-Ion Battery State Characteristic Gases.

Langmuir

January 2025

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

Realizing reliable online detection of characteristic gases (H, CH, CO, and CO) in lithium-ion batteries is crucial to maintain the safe and stable operation of power equipment and new energy storage power plants. In this study, transition metal Pt ( = 1, 3, and 4) clusters are attached to MoSe nanosheets for the first time based on density functional theory using the perfect crystalline facet modification method, and the adsorption characteristics and electronic behaviors of H, CH, CO, and CO are investigated and enhanced. The results show that Pt ( = 1, 3, and 4) is reliably chemically connected to the substrate without any significant deformation of the geometry.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

Graphene quantum dot-modified CoO/NiCoO yolk-shell polyhedrons as a polysulfide-adsorptive sulfur host for lithium-sulfur batteries.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!