Soft lithography-based patterning techniques have been developed to investigate biological and chemical phenomena. Until now, micropatterning with various materials required multiple procedural steps such as repeating layer-by-layer patterning, aligning of stamps, and incubating printed inks. Herein, we describe a facile micropatterning method for producing chemically well-defined surface architectures by combining microcontact (µCP) and microfluidic vacuum-assisted degas-driven flow guided patterning (DFGP) with a poly(dimethylsiloxane) (PDMS) stamp. To demonstrate our concept, we fabricated a bi-composite micropatterned surface with different functional molecular inks such as fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and polyethylene glycol (PEG)-silane for a biomolecule array, and 3-aminopropyltriethoxysilane (APTES) and PEG-silane pattern for a self-assembled colloid gold nanoparticle monolayer. With a certain composition of molecular inks for the patterning, bi-composite surface patterns could be produced by this µCP-DFGP approach without any supplementary process. This patterning approach can be used in microfabrication and highly applicable to biomolecules and nanoparticles that spread as a monolayer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233183 | PMC |
http://dx.doi.org/10.1038/s41598-018-35195-9 | DOI Listing |
Anal Sci
March 2021
Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Point-of-care testing (POCT) of biomarkers, such as proteins and nucleic acids, is a hot topic in modern medical engineering toward the early diagnosis of various diseases including cancer. Although microfluidic chips show great promise as a new platform for POCT, external pumps and valves for driving those chips have hindered the realization of POCT on the chips. To eliminate the need for pumps and valves, a power-free microfluidic pumping method utilizing degassed poly(dimethylsiloxane) (PDMS) was invented in 2004.
View Article and Find Full Text PDFSci Rep
November 2018
Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
Soft lithography-based patterning techniques have been developed to investigate biological and chemical phenomena. Until now, micropatterning with various materials required multiple procedural steps such as repeating layer-by-layer patterning, aligning of stamps, and incubating printed inks. Herein, we describe a facile micropatterning method for producing chemically well-defined surface architectures by combining microcontact (µCP) and microfluidic vacuum-assisted degas-driven flow guided patterning (DFGP) with a poly(dimethylsiloxane) (PDMS) stamp.
View Article and Find Full Text PDFLab Chip
March 2012
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
This article describes a portable microfluidic technology for determining the minimum inhibitory concentration (MIC) of antibiotics against bacteria. The microfluidic platform consists of a set of chambers molded in poly(dimethylsiloxane) (PDMS) that are preloaded with antibiotic, dried, and reversibly sealed to a second layer of PDMS containing channels that connect the chambers. The assembled device is degassed via vacuum prior to its use, and the absorption of gas by PDMS provides the mechanism for actuating and metering the flow of fluid in the microfluidic channels and chambers.
View Article and Find Full Text PDFDegas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!