New Mutation of Coenzyme Q Monooxygenase 6 Causing Podocyte Injury in a Focal Segmental Glomerulosclerosis Patient.

Chin Med J (Engl)

Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China.

Published: November 2018

Background: Focal segmental glomerulosclerosis (FSGS) is a kidney disease that is commonly associated with proteinuria and the progressive loss of renal function, which is characterized by podocyte injury and the depletion and collapse of glomerular capillary segments. The pathogenesis of FSGS has not been completely elucidated; however, recent advances in molecular genetics have provided increasing evidence that podocyte structural and functional disruption is central to FSGS pathogenesis. Here, we identified a patient with FSGS and aimed to characterize the pathogenic gene and verify its mechanism.

Methods: Using next-generation sequencing and Sanger sequencing, we screened the causative gene that was linked to FSGS in this study. The patient's total blood RNA was extracted to validate the messenger RNA (mRNA) expression of coenzyme Q monooxygenase 6 (COQ6) and validated it by immunohistochemistry. COQ6 knockdown in podocytes was performed in vitro with small interfering RNA, and then, F-actin was determined using immunofluorescence staining. Cell apoptosis was evaluated by flow cytometry, the expression of active caspase-3 was determined by Western blot, and mitochondrial function was detected by MitoSOX.

Results: Using whole-exome sequencing and Sanger sequencing, we screened a new causative gene, COQ6, NM_182480: exon1: c.G41A: p.W14X. The mRNA expression of COQ6 in the proband showed decreased. Moreover, the expression of COQ6, which was validated by immunohistochemistry, also had the same change in the proband. Finally, we focused on the COQ6 gene to clarify the mechanism of podocyte injury. Flow cytometry showed significantly increased in apoptotic podocytes, and Western blotting showed increases in active caspase-3 in si-COQ6 podocytes. Meanwhile, reactive oxygen species (ROS) levels were increased and F-actin immunofluorescence was irregularly distributed in the si-COQ6 group.

Conclusions: This study reported a possible mechanism for FSGS and suggested that a new mutation in COQ6, which could cause respiratory chain defect, increase the generation of ROS, destroy the podocyte cytoskeleton, and induce apoptosis. It provides basic theoretical basis for the screening of FSGS in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247592PMC
http://dx.doi.org/10.4103/0366-6999.245158DOI Listing

Publication Analysis

Top Keywords

podocyte injury
12
coenzyme monooxygenase
8
focal segmental
8
segmental glomerulosclerosis
8
sequencing sanger
8
sanger sequencing
8
sequencing screened
8
screened causative
8
causative gene
8
mrna expression
8

Similar Publications

Stem Cells Derived From Human Deciduous Exfoliated Teeth Ameliorate Adriamycin-Induced Nephropathy In Rats By Modulating The Th17/Treg Balance.

Curr Stem Cell Res Ther

December 2024

National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang Road, Beijing, 100730, China.

Background: Idiopathic Nephrotic Syndrome (INS) is a common kidney disease in children, and the main clinical manifestations are hypoproteinaemia, proteinuria, hyperlipidaemia, and oedema. Mesenchymal Stem Cells (MSCs) are involved in tissue repair, protection against fibrosis, and immune modulation but have rarely been studied in INS.

Objective: This study aimed to explore the therapeutic potential of stem cells derived from human exfoliated deciduous teeth (SHEDs) in INS using an adriamycin-induced nephropathy (AN) rat model.

View Article and Find Full Text PDF

GLP-1/GIP dual agonist tirzepatide normalizes diabetic nephropathy via PI3K/AKT mediated suppression of oxidative stress.

Int Immunopharmacol

December 2024

Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China. Electronic address:

Background: Effective therapeutic approaches for the treatment of diabetic nephropathy (DN) with irreversible deterioration of renal function are currently lacking. In this study, we aimed to investigate the ability of the glucagon-likepeptide-1 (GLP-1)/ gastric inhibitory polypeptide (GIP) dual agonist, tirzepatide to alleviate DN in mice and its underlying mechanisms.

Methods: We investigated the reno-protective effect of semaglutide and tirzepatide in a mouse model of DN, an insulin-treated positive control group was also included.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN), a severe complication of diabetes, is characterized by glomerular and tubular damage, which often leads to end-stage renal disease (ESRD). The role of renal macrophages (Mφs), particularly their phenotypic plasticity and function in DN, remains poorly understood. This study investigated the key factors influencing Mφ polarization and their impact on podocyte (PODO) injury in DN.

View Article and Find Full Text PDF

Urinary proteomics identifies distinct immunological profiles of sepsis associated AKI sub-phenotypes.

Crit Care

December 2024

Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.

Background: Patients with sepsis-induced AKI can be classified into two distinct sub-phenotypes (AKI-SP1, AKI-SP2) that differ in clinical outcomes and response to treatment. The biologic mechanisms underlying these sub-phenotypes remains unknown. Our objective was to understand the underlying biology that differentiates AKI sub-phenotypes and associations with kidney outcomes.

View Article and Find Full Text PDF

LncRNA HOXB3OS improves high glucose-mediated podocyte damage and progression of diabetic kidney disease through enhancing SIRT1 mRNA stability.

Biomed Pharmacother

December 2024

Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China. Electronic address:

High glucose (HG)-mediated podocyte damage can be ameliorated by lncRNA HOXB3OS, and exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exo) can ameliorate the progression of diabetic kidney disease (DKD) dependening on RNA. To investigate the mechanism by which HOXB3OS improves podocyte injury and the effects of engineered ADSCs-Exo with a high abundance of HOXB3OS on DKD progression, MPC5 cells stimulated with HG and db/db mice were used to develop a podocyte injury model and type II DKD mouse model, respectively. HOXB3OS expression and mRNA level of SIRT1 were detected by qRT-PCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!