Connexins, in particular connexin 43 (Cx43), function as gap junction channels (GJCs) and hemichannels (HCs). Only recently, specific tools have been developed to study their pleiotropic functions. Based on various protein interaction sites, distinct connexin-mimetic peptides have been established that enable discrimination between the function of HCs and GJCs. Although the precise mechanism of action of most of these peptides is still a matter of debate, an increasing number of studies report on important effects of those compounds in disease models. In this review, we summarize the structure, life cycle, and the most important physiological and pathological functions of both connexin GJCs and HCs. We provide a critical overview on the use of connexin-targeting peptides, in particular targeting Cx43, with a special focus on the remaining questions and hurdles to be taken in the research field of connexin channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molmed.2018.10.005 | DOI Listing |
Biology (Basel)
December 2024
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84132, USA.
Connexins are a family of transmembrane proteins that form membrane channels [...
View Article and Find Full Text PDFMol Carcinog
January 2025
Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China.
Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan. Electronic address:
Pannexin-3 (PANX3) is a member of the pannexin family of large-pore, ATP-permeable channels conserved across vertebrates. PANX3 contributes to various developmental and pathophysiological processes by permeating ATP and Ca ions; however, the structural basis of PANX3 channel function remains unclear. Here, we present the cryo-EM structure of human PANX3 at 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!