Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the (also called ) allele in mice. and are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double and zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including and , and and , respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of and cartilage markers (, ). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315545 | PMC |
http://dx.doi.org/10.3390/jdb6040027 | DOI Listing |
Metabolites
December 2024
The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.
General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.
View Article and Find Full Text PDFSci Adv
August 2024
Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
Histone acetyltransferases and are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling.
View Article and Find Full Text PDFSci Adv
May 2024
Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
J Biomol Struct Dyn
December 2023
Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India.
Crit Rev Eukaryot Gene Expr
October 2023
Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China; Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China.
Histone acetylation that controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs), as one of major epigenetic mechanisms controls transcription and its abnormal regulation was implicated in various aspects of cancer. However, the comprehensive understanding of HDACs and HATs in cancer is still lacking. Systematically analysis through 33 cancer types based on next-generation sequence data reveals heterogeneous expression pattern of HDACs and HATs across different cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!