A Novel Electronic Interface for Micromachined Si-Based Photomultipliers.

Micromachines (Basel)

Department of Industrial and Information Engineering and Economics, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy.

Published: October 2018

In this manuscript, the authors propose a novel interface for silicon photomultipliers based on a second-generation voltage conveyor as an active element, performing as a transimpedance amplifier. Due to the absence of internal feedback, this solution offers a static bandwidth regardless of the tunable gain level. The simulation results have shown good performances, confirming the possibility of the proposed interface being effectively used in different scenarios. A preliminary hybrid solution has also been developed using second-generation current conveyors and measurements conducted on an equivalent discrete-elements board, which is promising.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215205PMC
http://dx.doi.org/10.3390/mi9100507DOI Listing

Publication Analysis

Top Keywords

novel electronic
4
electronic interface
4
interface micromachined
4
micromachined si-based
4
si-based photomultipliers
4
photomultipliers manuscript
4
manuscript authors
4
authors propose
4
propose novel
4
novel interface
4

Similar Publications

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

Non-invasive electron paramagnetic resonance imaging detects tumor redox imbalance induced by ferroptosis.

Redox Rep

December 2025

Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.

View Article and Find Full Text PDF

Cigarette smoking remains an enormous public health problem causing millions of preventable deaths annually worldwide. Although safe and efficient smoking cessation pharmacotherapies such as nicotine replacement products and the medications varenicline and bupropion are available, long-term abstinence rates remain low and new approaches to help smokers successfully quit smoking are needed. In recent years, electronic nicotine delivery systems such as e-cigarettes and heated-tobacco products, and novel smokeless nicotine delivery products like nicotine pouches have gained widespread popularity.

View Article and Find Full Text PDF

This study explores the concept of molecular orbital tuning for organic semiconductors through the use of '-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene ( and ). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives ( and ), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels.

View Article and Find Full Text PDF

Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of five neurometabolic disorders caused by five genetic defects responsible for BH4 biosynthesis and regeneration. Their global prevalence remains unknown, and variance exists among different countries.

Aims: To describe clinical, biochemical, molecular genetic data and follow-up of patients with BH4 deficiency seen in Tawam Hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!