Introduction to Photonics: Principles and the Most Recent Applications of Microstructures.

Micromachines (Basel)

Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, District 7, Ho Chi Minh City, Vietnam.

Published: September 2018

Light has found applications in data transmission, such as optical fibers and waveguides and in optoelectronics. It consists of a series of electromagnetic waves, with particle behavior. Photonics involves the proper use of light as a tool for the benefit of humans. It is derived from the root word "photon", which connotes the tiniest entity of light analogous to an electron in electricity. Photonics have a broad range of scientific and technological applications that are practically limitless and include medical diagnostics, organic synthesis, communications, as well as fusion energy. This will enhance the quality of life in many areas such as communications and information technology, advanced manufacturing, defense, health, medicine, and energy. The signal transmission methods used in wireless photonic systems are digital baseband and RoF (Radio-over-Fiber) optical communication. Microwave photonics is considered to be one of the emerging research fields. The mid infrared (mid-IR) spectroscopy offers a principal means for biological structure analysis as well as nonintrusive measurements. There is a lower loss in the propagations involving waveguides. Waveguides have simple structures and are cost-efficient in comparison with optical fibers. These are important components due to their compactness, low profile, and many advantages over conventional metallic waveguides. Among the waveguides, optofluidic waveguides have been found to provide a very powerful foundation for building optofluidic sensors. These can be used to fabricate the biosensors based on fluorescence. In an optical fiber, the evanescent field excitation is employed to sense the environmental refractive index changes. Optical fibers as waveguides can be used as sensors to measure strain, temperature, pressure, displacements, vibrations, and other quantities by modifying a fiber. For some application areas, however, fiber-optic sensors are increasingly recognized as a technology with very interesting possibilities. In this review, we present the most common and recent applications of the optical fiber-based sensors. These kinds of sensors can be fabricated by a modification of the waveguide structures to enhance the evanescent field; therefore, direct interactions of the measurand with electromagnetic waves can be performed. In this research, the most recent applications of photonics components are studied and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187676PMC
http://dx.doi.org/10.3390/mi9090452DOI Listing

Publication Analysis

Top Keywords

optical fibers
12
fibers waveguides
8
electromagnetic waves
8
waveguides waveguides
8
evanescent field
8
waveguides
7
optical
6
applications
5
sensors
5
introduction photonics
4

Similar Publications

This paper presents, for the first time to the best of our knowledge, simultaneous temperature and relative humidity (RH) measurement using a machine learning (ML) model in Rayleigh-based Optical Frequency Domain Reflectometry (OFDR). The sensor unit consists of two segments: bare and polyimide-coated fibers, each with different sensitivities to temperature. The polyimide-coated fiber is RH-sensitive, unlike the bare fiber.

View Article and Find Full Text PDF

Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates.

Micromachines (Basel)

December 2024

Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Optical computing offers advantages such as high bandwidth and low loss, playing a crucial role in signal processing, communication, and sensing applications. Traditional optical logic gates, based on nonlinear fibers and optical amplifiers, suffer from poor robustness and large footprints, hindering their on-chip integration. All-optical logic gates based on topological photonic crystals have emerged as a promising approach for developing robust and monolithic optical computing systems.

View Article and Find Full Text PDF

This paper explores the use of large core declad optical fibers coated with molecularly imprinted polymers for chlorpyrifos detection, a key marker of organophosphate pesticides. The performance of sensor is evaluated using artificial neural networks and principal component analysis. By varying the declad length, the performance of molecularly imprinted polymer-coated fibers is compared to uncoated fibers, and both are used to identify commercial and pure samples of chlorpyrifos pesticides.

View Article and Find Full Text PDF

Neurodegeneration in glaucoma patients is clinically identified through longitudinal assessment of structure-function changes, including intraocular pressure, cup-to-disc ratios from fundus images, and optical coherence tomography imaging of the retinal nerve fiber layer. Use of human post-mortem ocular tissue for basic research is rising in the glaucoma field, yet there are challenges in assessing disease stage and severity, since tissue donations with informed consent are often unaccompanied by detailed pre-mortem clinical information. Further, the interpretation of disease severity based solely on anatomical and morphological assessments by histology can be affected by differences in death-to-preservation time and tissue processing.

View Article and Find Full Text PDF

Self-Healing Flexible Fiber Optic Sensors for Safe Underwater Monitoring.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.

The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!