AI Article Synopsis

  • The paper presents an enhanced large signal model for 0.1 µm AlGaN/GaN HEMTs, factoring in short channel effects like DIBL and channel length modulation for better DC characteristic accuracy.
  • Validation of the model is conducted using in-house HEMTs, showing strong agreement between simulated results and actual measurements for S parameters, I-V characteristics, and performance at 28 GHz.
  • Additionally, a MMIC power amplifier is designed to operate between 92 GHz and 96 GHz, confirming that the improved model is applicable at frequencies up to the W band.

Article Abstract

An improved empirical large signal model for 0.1 µm AlGaN/GaN high electron mobility transistor (HEMT) process is proposed in this paper. The short channel effect including the drain induced barrier lowering (DIBL) effect and channel length modulation has been considered for the accurate description of DC characteristics. In-house AlGaN/GaN HEMTs with a gate-length of 0.1 μm and different dimensions have been employed to validate the accuracy of the large signal model. Good agreement has been achieved between the simulated and measured S parameters, I-V characteristics and large signal performance at 28 GHz. Furthermore, a monolithic microwave integrated circuit (MMIC) power amplifier from 92 GHz to 96 GHz has been designed for validation of the proposed model. Results show that the improved large signal model can be used up to W band.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187807PMC
http://dx.doi.org/10.3390/mi9080396DOI Listing

Publication Analysis

Top Keywords

large signal
20
signal model
16
improved large
8
algan/gan high
8
high electron
8
electron mobility
8
monolithic microwave
8
microwave integrated
8
integrated circuit
8
circuit mmic
8

Similar Publications

Background: The effect of background noise on auscultation accuracy for different lung sound classes under standardised conditions, especially at lower to medium levels, remains largely unexplored. This article aims to evaluate the impact of three levels of Gaussian white noise (GWN) on the ability to identify three classes of lung sounds.

Methods And Materials: A pre-post pilot study assessing the impact of GWN on a group of students' ability to identify lung sounds was conducted.

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Vanin-1-Activated Fluorescent Probe for Real-Time Imaging of Inflammatory Responses Across Multiple Tissue Types.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.

Vanin-1 is a pantetheine hydrolase that plays a key role in inflammatory diseases. Effective tools for noninvasive, real-time monitoring of Vanin-1 are lacking, largely due to background fluorescence interference in existing probes. To address this issue, we developed a dual-modal fluorescent and colorimetric probe, MB-Van1, to detect Vanin-1 with high sensitivity and selectivity.

View Article and Find Full Text PDF

Lighting Up Dual-Aptamer-Based DNA Logic-Gated Series Lamp Probes with Specific Membrane Proteins for Sensitive and Accurate Cancer Cell Identification.

Anal Chem

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.

Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.

View Article and Find Full Text PDF

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!