In view of the large output noise and low precision of the Micro-electro-mechanical Systems (MEMS) gyroscope, the virtual gyroscope technology was used to fuse the data of the MEMS gyroscope to improve its output precision. Random error model in the conventional virtual gyroscopes contained an angular rate random walk and angle random walk ignoring other noise items and the virtual gyroscope technology can not compensate all random errors of MEMS gyroscope. So, the improved virtual gyroscope technology based on the autoregressive moving average (ARMA) model was proposed. First, the conventional virtual gyroscope technology was used to model the random error of three MEMS gyroscopes, and the data fusion was carried out by a Kalman filter to get the output of the virtual gyroscope. After that, the ARMA model was used to model the output of the virtual gyroscope, the random error model was improved with the ARMA model, and the Kalman filter was designed based on the improved random error model for data fusion of the MEMS gyroscopes. The experimental results showed that the 1σ standard deviation of the output of the virtual gyroscope based on the ARMA model was 1.4 times lower than that of the conventional virtual gyroscope output.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082298 | PMC |
http://dx.doi.org/10.3390/mi9070348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!