Salivary Exosome and Cell-Free DNA for Cancer Detection.

Micromachines (Basel)

School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.

Published: July 2018

AI Article Synopsis

  • - Liquid biopsies, particularly using saliva, provide a simpler and less invasive method for obtaining patient samples compared to traditional tissue biopsies, allowing for ongoing disease monitoring and personalized treatment adjustments.
  • - Saliva contains disease-related biomarkers, including exosomes and cell-free DNA (cfDNA), although in lower concentrations than found in blood, making their isolation and concentration crucial for effective analysis.
  • - The review discusses challenges with saliva's viscosity and impurities in using microfluidics for biomarker separation and compares the efficiency of commercially available kits against microfluidic chips for isolating exosomes and cfDNA.

Article Abstract

Liquid biopsies are easier to acquire patient derived samples than conventional tissue biopsies, and their use enables real-time monitoring of the disease through continuous sampling after initial diagnosis, resulting in a paradigm shift to customized treatment according to the patient's prognosis. Among the various liquid biopsy samples, saliva is easily obtained by spitting or swab sucking without needing an expert for sample collection. In addition, it is known that disease related biomarkers that exist in the blood and have undergone extensive research exist in saliva even at a lower concentration than the blood. Thus, interest in the use of saliva as a liquid biopsy has increased. In this review, we focused on the salivary exosome and cell-free DNA (cfDNA) among the various biomarkers in saliva. Since the exosome and cfDNA in saliva are present at lower concentrations than the biomarkers in blood, it is important to separate and concentrate them before conducting down-stream analyses such as exosome cargo analysis, quantitative polymerase chain reaction (qPCR), and sequencing. However, saliva is difficult to apply directly to microfluidics-based systems for separation because of its high viscosity and the presence of various foreign substances. Therefore, we reviewed the microfluidics-based saliva pretreatment method and then compared the commercially available kit and the microfluidic chip for isolation and enrichment of the exosome and cfDNA in saliva.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082266PMC
http://dx.doi.org/10.3390/mi9070340DOI Listing

Publication Analysis

Top Keywords

salivary exosome
8
exosome cell-free
8
cell-free dna
8
liquid biopsy
8
saliva
8
saliva lower
8
exosome cfdna
8
cfdna saliva
8
dna cancer
4
cancer detection
4

Similar Publications

Background: Chronic smoking is an established risk factor for oral cancer (OC). The role of tobacco in oral squamous cell cancer (OSCC) emphasizes the need for non-invasive diagnostic approaches to identify early molecular alterations and improve patient outcomes. Salivary exosomes, which contain proteins, lipids, and nucleic acids, accessible and rich in biological content, making them interesting candidate biomarkers.

View Article and Find Full Text PDF

The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration.

View Article and Find Full Text PDF

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

Current tick control measures are focused on the use of synthetic acaricides and personal protective measures. However, the emergence of acaricide resistance and the maintenance of tick populations in wildlife has precluded the efficient management of ticks. Thus, host-targeted, non-chemical control measures are needed to reliably reduce ticks parasitizing sylvatic reservoirs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!