Preparation of gentamicin sulfate eluting fiber mats by emulsion and by suspension electrospinning.

Mater Sci Eng C Mater Biol Appl

CIEPQPF, Chemical Engineering Department, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal.

Published: January 2019

This work investigates the immobilization of the antibiotic gentamicin sulfate (GS) in electrospun fiber mats composed of poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL) and the copolymer poly(lactic-co-glycolic acid) (PLGA). Since GS is highly water soluble but weakly soluble in the organic solvents commonly used in the electrospinning process, two methods of immobilization were investigated: by suspension electrospinning, in which GS particles were directly dispersed in the polymeric organic solutions, and by emulsion electrospinning, in which GS was solubilized in an aqueous phase that was then dispersed in the organic polymeric solution containing the surfactant SPAN80. Fibers with distinct diameters and morphologies were obtained for the different methods and compositions. Contrary to the fibers prepared by suspension electrospinning, emulsion electrospinning based fibers exhibited an excellent wettability, allegedly due to the effect of the surfactant SPAN80. Despite the differences between both methods the produced mats presented similar GS release profiles, with a considerable burst release in the first 8 h followed by a gradual release of the remaining drug during the next 4-6 days. Finally, all GS loaded fiber mats proved to have an antibacterial effect against the bacterial strain Staphylococcus aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.09.019DOI Listing

Publication Analysis

Top Keywords

fiber mats
12
suspension electrospinning
12
gentamicin sulfate
8
emulsion electrospinning
8
surfactant span80
8
electrospinning
6
preparation gentamicin
4
sulfate eluting
4
eluting fiber
4
mats
4

Similar Publications

In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers.

Macromol Rapid Commun

December 2024

Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy.

Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm.

View Article and Find Full Text PDF

The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS).

View Article and Find Full Text PDF

This study addresses the critical need for effective antibacterial materials by exploring the innovative integration of dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DTSACl) onto cellulose nanocrystal (CNC), followed by its incorporation into polylactic acid and gelatin matrices to engineer antibacterial nanofiber mats. The modification of CNC with DTSACl (QACNC) was studied and confirmed by FT-IR, C NMR, and XRD analysis. Furthermore, the impact of such addition on the morphology, mechanical, hydrophobic properties, and antibacterial efficacy of the resultant QACNC nanofibers were thoroughly investigated.

View Article and Find Full Text PDF

Disinfection inducing release of contaminants from baby play mats: microplastics and volatile organic compounds.

Environ Pollut

December 2024

Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China. Electronic address:

Baby play mats serve as essential protective equipment widely utilized in residences, daycares, and kindergartens. Given their direct contact with infants and young children, the pollutants released from play mats may pose potential health risks. This study investigated the impact of disinfection on the release of microplastics (MPs) from play mats and offers an in-depth analysis of the derived volatile organic compounds (VOCs) release.

View Article and Find Full Text PDF

Photo-crosslinkable methacrylated alginate derivatives (M-ALGs) were synthesized modification of sodium alginate with glycidyl methacrylate. Needle (capillary) and needleless electrospinning techniques were employed to produce their nonwoven fiber mats. Spinning parameters such as applied voltage, solution composition, and flow rate were optimized to form uniform bead-free fibers with an average diameter of about 150 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!