In this study, we loaded a biomimetic calcium phosphate bone cement (CPC) with relatively high amounts of a bisphosphonate through the use of Solid Lipid Microparticles (MPs) and investigated bone cells response to the composite cements. 10, 20 and 30% w/w of Alendronate (AL) were successfully introduced into microparticles of Cutina HR and Precirol, which were prepared by means of spray-congealing technique. Addition of AL-loaded MPs to the cement composition provoked a lengthening of the setting and of the hardening processes. However, setting times were still in a range useful for clinical applications, except for the cements at the highest Alendronate content. The composite cements displayed a sustained drug release over time. Cements with the best performances in terms of setting, hardening, mechanical properties and drug release were submitted to in vitro tests using a co-culture model of osteoblast and osteoclast. The results showed that the use of MPs to enrich the cement composition with Alendronate provides materials able to inhibit osteoclast viability and activity, while promoting osteoblast viability and earlier differentiation, indicating that the MPs-cements are good delivery systems for bisphosphonates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.11.023DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
8
phosphate bone
8
bone cement
8
composite cements
8
cement composition
8
setting hardening
8
drug release
8
modulation alendronate
4
alendronate release
4
release calcium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!