Caffeine is a substance that is consumed worldwide, and it may exert neuroprotective effects against various cerebral insults, including neurotrauma, which is the most prevalent injury among military personnel. To investigate the effects of caffeine on high-intensity blast wave-induced severe blast injury in mice, three different paradigms of caffeine were applied to male C57BL/6 mice with severe whole body blast injury (WBBI). The results demonstrated that chronic caffeine treatment alleviated blast-induced traumatic brain injury (bTBI); however, both chronic and acute caffeine treatments exacerbated blast-induced lung injuries and, more importantly, increased both the cumulative and time-segmented mortalities postinjury. Interestingly, withdrawing caffeine intake preinjury resulted in favorable outcomes in mortality and lung injury, similar to the findings in water-treated mice, and had the trend to attenuate brain injury. These findings demonstrated that although drinking coffee or caffeine preparations attenuated blast-induced brain trauma, these beverages may place personnel in the battlefield at high risk of casualties, which will help us re-evaluate the therapeutic strategy of caffeine application, particularly in multiple-organ-trauma settings. Furthermore, these findings provided possible strategies for reducing the risk of casualties with caffeine consumption, which may help to change the coffee-drinking habits of military personnel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2018.11.004 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:
Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.
Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.
Am J Pathol
January 2025
Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.
View Article and Find Full Text PDFExp Neurol
January 2025
Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:
Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.
View Article and Find Full Text PDFIschemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!