Monte Carlo Simulation of Strain-Enhanced Stereocomplex Polymer Crystallization.

J Phys Chem B

Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University, Nanjing 210023 , China.

Published: December 2018

We performed dynamic Monte Carlo simulations to investigate strain-induced polymer crystallization under separate enhancements of the driving forces for homocomponent and stereocomplex crystallization in the half-half symmetric racemic polymer blends. The results showed that the polymer strain significantly enhances the stereocomplex crystallization, in comparison to the parallel cases of template-induced crystal growth without any strain in the previous simulations. We attributed the results to the strain-induced polymer crystallization favoring intermolecular crystal nucleation at high temperatures, which benefits the stereocomplex crystallization. Our observations provided a molecular-level interpretation to the strain- or shear-enhanced stereocomplex crystallization in the racemic polylactide blends.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b07499DOI Listing

Publication Analysis

Top Keywords

stereocomplex crystallization
16
polymer crystallization
12
monte carlo
8
strain-induced polymer
8
crystallization
7
stereocomplex
5
polymer
5
carlo simulation
4
simulation strain-enhanced
4
strain-enhanced stereocomplex
4

Similar Publications

Self-crystal electret poly(lactic acid) nanofibers for high-flow air purification and AI-assisted respiratory diagnosis.

J Hazard Mater

December 2024

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008,  China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:

Particulate matters (PMs), one of the major airborne pollutants, continue to seriously threaten human health and the environment. Here, a self-crystal-induced electret enhancement (SCIEE) strategy was developed to promote the in-situ electret effect and polarization properties of electrospun poly(L-lactic acid) (PLLA) nanofibers. The strategy specifically involved the elaborate pre-structuring of stereocomplex crystals (SCs) with uniform dimensions (∼300 nm), which were introduced into PLLA electrospinning solution as the electrets and physical cross-linking points of high density.

View Article and Find Full Text PDF

Enhancing the ductility of polylactide (PLA) through toughening modification to expand the application range of PLA aligns with the requirements of green development. In this study, eco-friendly bio-based plastic polyamide 11 (PA11) was chosen to modify poly(l-lactide) (PLLA). PA11 and poly(d-lactide) (PDLA) were grafted onto the main chain of ADR via simple reactive processing and utilized as reactive compatibilizers to improve toughening efficiency of PA11.

View Article and Find Full Text PDF

Fabrication of stereocomplex-type poly(lactic acid) nanocomposites based on the selective nucleation of poly(vinyl acetate) modified cellulose nanocrystals.

Carbohydr Polym

January 2025

Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China. Electronic address:

The incorporation of biomass fillers into poly(lactic acid) (PLA) enantiomeric blends offers a novel strategy to promote stereocomplex (SC) crystallization while preserving the biodegradability of PLA. In this study, poly(vinyl acetate)-modified cellulose nanocrystals (CNC-PVAc) were prepared through a one-pot reaction and employed as nanofillers for PLA. The results indicate that CNC-PVAc enhances the crystallization of stereocomplex crystallites (SCs) while inhibiting the formation of homocrystallites (HCs).

View Article and Find Full Text PDF

Toughening Immiscible Polymer Blends: The Role of Interface-Crystallization-Induced Compatibilization Explored Through Nanoscale Visualization.

ACS Appl Mater Interfaces

October 2024

Processing and Performance of Materials, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.

This study explores the novel approach of interface-crystallization-induced compatibilization (ICIC) via stereocomplexation as a promising method to improve the interfacial strength in thermodynamically immiscible polymers. Herein, two distinct reactive interfacial compatibilizers, poly(styrene--glycidyl methacrylate)--poly(l-lactic acid) (SAL) and poly(styrene--glycidyl methacrylate)--poly(d-lactic acid) (SAD) are synthesized via reactive melt blending in an integrated grafting and blending process. This approach is demonstrated to enhance the interfacial strength of immiscible polyvinylidene fluoride/poly l-lactic acid (PVDF/PLLA) 50/50 blends via ICIC.

View Article and Find Full Text PDF

The study investigates the impact of the d-lactic acid units content on the crystallinity and crystal structure of commercial poly(lactic acid) (PLA) grades, which are copolymers of poly(l-lactic acid) (PLLA) containing a minor amount of d-units. As the d-units content increases, a detectable decrease in crystallinity was observed along with a simultaneous rise in mobile amorphous fraction (MAF) and a reduction in rigid amorphous fraction (RAF). The percentage of d-units was found not to significantly affect RAF thickness, suggesting that the d-units are not completely excluded from the crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!